针对具有Markov区制转移的、波动均值状态相依的随机波动模型,基于贝叶斯分析,我们推导并给出了对区制转移随机波动模型的MCMC估计方法,其中对参数估计采用Gibbs抽样方法,对潜在对数波动和区制的状态变量估计采用"向前滤波、向后抽样"的多步移动方法;利用该模型,对我国上证综指周收益率进行了实证分析,发现对沪市波动性有较好的描述,捕捉了波动的时变性、聚类性和非线性特征,同时刻画了沪市的高低波动状态转换过程。
下载附件