传统宏观计量模型需要利用加总或插值等方法将混频数据统一到同频数据再应用于宏观经济模型中。而混频数据模型是直接利用混频数据构建模型,避免了因数据加总或插值导致的信息损失和人为信息的虚增,充分利用了现有高频数据的信息,改进了宏观计量模型估计的有效性和预测的精度。混频数据抽样模型(MIDAS)是混频数据模型的一种,它使用参数控制的滞后权重多项式函数对高频滞后数据进行有权重的加总并构建模型,再通过数值优化和非线性的方法估计混频数据模型中的最优参数。MIDAS模型是攫取现有高频数据的全样本信息用于宏观经济和金融的分析与预测的有效方法,本文基于该模型的实证研究探寻混频数据在中国宏观经济应用中的有效性。