摘要:季度GDP 的走势与波动不仅会影响政府的财政收支、企业的盈利和财务状况,甚至还会影响家庭和个人的收入与支出,是宏观经济总量预报、预测与分析的重中之重。传统的宏观经济总量预测模型是基于同频数据进行的,高频和超高频数据必需处理为低频数据,这不仅忽略了高频数据信息的变化,还影响了模型预报和预测的及时性,降低了模型的预测精度。本文将混合数据抽样模型(MIDAS) 用于中国季度GDP 的预报和预测,实证研究表明,出口是造成我国金融危机时期经济增长减速的主要因素,MIDAS模型在中国宏观经济总量的短期预测方面具有精确性的比较优势,在实时预报方面具有显著的可行性和时效性。
关键词:混频数据;MIDAS模型;GDP;实时预报;短期预测;时效性