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Abstract: In this paper an asset price model described by hidden Markov process dS(t) =

μ(t)S(t)dt + σS(t)dW(t ) is considered, where W is a standard Brownian motion and σ is an 

unknown constant. The mean return{μ(t), 0 ≤ t ≤ T} is a stochastic process not necessarily 

adapted to the filtration generated by the process {S(t), 0 ≤ t ≤ T} and it contains  some 

unknown parameters to be estimated from a continuous time observation of S(t). Statistical 

estimators of the parameters σ  and the parameters in μ  based on Kalman filtering are  

proposed and some numerical simulations are  performed  for the proposed estimators. 
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1  Introdution 

Let (Ω, £, Ρ) be a probability space with a complete and right continuous filtration {£t , 0 ≤ t ≤

T}  and let W = {W(t),0 ≤ t ≤ T } and W′ = {W′(t), 0 ≤ t ≤ T } be two independent  

Brownian motions adapted to the filtration {£t , t ≤ T}. Consider an asset whose price follows 

the following stochastic differential equation: 

                        dS(t) = μ(t)S(t)dt + σS(t)dW(t )                       (1.1) 

 where the drift coefficient μ = {μ(t), t ≤ T} is mean-reverting process satisfying 

                       dμ(t) = α(ϑ − μ(t))dt + βdW′(t)                        (1.2) 

Here we assume that α > 0, 𝛽 > 0, 𝜎 > 0 and ϑ ∈ R are unknown parameters to be estimated 

from the observation of the process{S(t), 0 ≤ t ≤ T}. The initial value of the drift μ0 = μ(0) ∈ R 

is also assumed to be an unknown constant to be estimated. Since μ(t) is unobservable, we 

called such model (1.1) and (1.2) as hidden Markov process model. We refer to the work of Elliott, 

R. J. etc(1995) for a general reference. This model has wide applications in many fields such as in 

finance and the estimation problem has been studied earlier. Our work is motivated by the work  

of Frydman and Lakner(2003) where a kind of maximum likelihood type estimation method was 

proposed. To implement their estimators they proposed to use the EM (expectation maximization) 

algorithm. 

For more detail information about the likelihood ratio estimator for hidden Markov chain model, 

we refer to the references of Frydman and Lakner(2003). See also Dembo and Zeitouni(1986) for 

EM algorithm application to the parameter estimation of the hidden continuous time random 

processes and in particular to the parameter estimation of hidden diffusions. It is necessary 

andvery interesting to simulate the above processes μ(t) and S(t) and use the approach 

proposed in the work of Frydman and Lakner(2003) to estimate the parameters. However, their 

estimators are very complex and it is very hard for us to write computer codes to implement their 

algorithm. 

Here in this paper we propose another method for the estimation of the parameters by using the 
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Kalman filtering technique. Since the solution to (1.1) is positive if the initial condition S(0) is 

positive we can make a substitute of Y(t) = logS(t). Then Y(t) will satisfy a linear equation 

which can be considered as an observation equation for the state process μ(t). Thus we are led 

to a parameter estimation problem of some parameters in the state equation in an linear filtering 

setting. Kalman filtering technique is a natural selection in such problem. The goal of this paper is 

to make this possible. 

This paper is organized as follows. The main idea of our work together with some basic results 

from the Kalman filtering theory needed in this work is briefly recalled in Section 2. Section 3 

proposes some estimators for the parameters of the model by using the idea of Kalman filtering. 

Section 4 proposes the algorithm to compute our estimators. Section 5 presents some numerical 

simulation results for our estimators. First we simulate the process μ(t) and then S(t) with some 

given specific parameters α > 0, β > 0, σ > 0 ϑ ∈ R, and μ0 ∈ R ,. And then we use our 

proposed estimators to estimate these parameters. Thus we can compare our estimated 

parameters with the true parameters. A discussion is also given there. 

2  Preliminary and main idea 

Kalman filtering theory have been studied extensively. Let us recall some basic results we shall 

use following the book of Davis. Let the state x(t) and its noise corrupted observation y(t) are 

given by 

                       {
dx(t) = A(t)x(t)dt + c(t)dϑ(t)

x(0) = x
                          (2.1) 

and 

                       {
dy(t) = H(t)x(t)dt + G(t)dw(t)

y(0) = 0
                         (2.2) 

where ϑ(t) and w(t) are processes with orthogonal incrementsand the initial r.v. x is orthogonal 

to { ϑ(t),w(t)} and the coefficient matrices A(t),C(t),H(t),G(t) are deterministic continuous in t. 

Assume that at any time t, the values of the process (y(s), 0 ≤ s ≤ t) are observed but x(t) is 

unknown. We need to estimate the value of x(t). The best estimator in the mean square sense if 

the conditional expectation of x(t) given (y(s), 0 ≤ s ≤ t). Namely the best estimate x̂(t) =

E(x(t)|y(s), 0 ≤ s ≤ t). This is also the orthogonal projection of x(t) to the linear space of linear 

functional of (y(s), 0 ≤ s ≤ t) when y is Gaussian process.  The Kalman filtering technique gives 

an simple explicit way to compute x̂(t) = E(x(t)|y(s), 0 ≤ s ≤ t),  which is described in the 

following theorem. 

Theorem 2.1  Assume that G(t)G'(t) is strictly positive definite for all t. Then x̂(t) is the unique 

solution of the linear stochastic differential equation     

                  {
d x̂(t) = (A − PH′(GG′)−1H) x̂(t)dt + PH′(GG′)−1dy(t)

 x̂(0) = E[x(0)] = m0
           (2.3)  

where P(t) = E[( x̂(t) − x(t))( x̂(t) − x(t))T]  is the error covariance matrix which is 

determined by the following matrix Riccati equation 

   { Ṗ = CC′ − PH′(GG′)−1
HP + AP + PA′

P(0) = E[(x(0) − Ex(0))(x(0) − Ex(0))T]
                    (2.4)  

The proof of this theorem is in many books (see for example the book of Davis).              

Here is the main idea of our approach. First if the hidden process μ(t) given by (1.2) is 

observable, then we can estimate the parameters α, ϑ, μ0  and β  by μ(s), 0 ≤ s ≤ t . For 

example, we can estimate the parameter α  by he least squares estimator (or maximum 



likelihood estimator). See equations (3.3)-(3.9) in the next section. However, since (μ(s), 0 ≤ s ≤

t) is not available, we can use the Kalman filter (μ̂(s),0 ≤ s ≤ t) to replace μ(t). To compute the 

Kalman filter μ̂, we need to know the true parametersα, ϑ, μ0 and β and so on. We shall use 

iteration for this. First we are given an initial approximation of the parameters. We use these 

parameters to compute the filter μ̂(t). Then we use this filter μ(t) to update the approximation 

of the parameters and so on. The detailed algorithm is explained in Section 5.  

3  Parameter Estimators 

In this section we consider the equations (1.1) and (1.2). Assume that we have the following 

observations {S(0), S(t1), S(t2), ⋯ , S(tn)}  of the process S(t) at discrete time instants 

t0, t1 , t2, ⋯ , tn , wherti =
iT

n
= ih,i = 0,1,2, ⋯ , n (we denote h =

T

n
). We wish to estimate the 

unknown parameters σ, α, β, ϑ and the initial unknown value μ(0) appeared in the equations 

(1.1) and (1.2). Here we assume that the interval between two consecutive observations are 

uniform. But other kind of observations can be treated analogously. 

Firstly  we make the following transformations: 

                           {
x(t) =

1

β
μ(t) −

1

β
μ0

y(t) =
1

σ
log (

S(t)

S(0)
) +

σ

2
t
                              (3.1)  

The equations (1.1) and (1.2) become 

                         {
dx(t) = α(δ − x(t))dt + dw′(t)

dy(t) = (λx(t) + γ)dt + dw(t)
                       (3.2) 

Where x(0)=0, y(0)=0, δ =
ϑ−μ0

β
, λ =

β

σ
, and γ =

μ0

σ
. 

From the second equation in (3.2) we have 

                      y(t) = y(0) + λ ∫ x(s)ds
t

0
+ γt + W(t). 

Then we can use the so -called trajectory fitting method to estimate γ (see the work of 

Kutoyants(2004) and Hu, etc.(2009)): 

   γ̂ =
(y(T)−y(0))−λ ∫ x(t)dt

T
0

T
                              (3.3) 

We can also use the similar technique and the first equation of (3.2) to estimate δ:. 

   δ̂ =
x(T)+α∫ x(t)dt

T
0

αT
                                    (3.4)  

We still need to estimate λ, α and other parameters. For this reason we continue to make 

the following transformations: 

               {
ξ(t) =  λ(δ − x(t)) =

 λ

β
(βδ − μ(t) − μ0)

y′(t) = y(t) − (λδ + γ)t =
1

σ
log (

S(t)

S(0)
) +

σ

2
t −

ϑ

σ
t
                (3.5)  

Then we transform the equations (1.1) and (1.2) into 

      {
dξ(t) = −αξ(t)dt −  λdw′(t)

dy′(t) = −ξ(t)dt + dw(t)
                             (3.6)  

Where ξ(0) =  λδ, and y'(0)=y(0)=0. 

The first equation of (3.6) is the well-known Ornstein-Uhlenbeck process. There are two 

well-known types of estimators. One is the so-called least squares estimators and the other one 



is the so-called the maximum likelihood estimator. These two types of estimator are the same for 

this simple model and have been studied since long time (see the book of Liptser, and Shiryaev, 

2001). They are given by 

                               α̂ = −
∫ ξ(t)dξ(t)

T
0

∫ ξ(t)2T
0 dt

                             (3.7)  

The large deviation type results for the above  estimator is studied in the paper of Bercu,  

and Rouault(2002)  and a central limit type result was studied in the work of Hu, and 

Nualart(2010). 

If the process ξ(t) can be observed at discrete time instants tk = kh, where h =
T

n
 and 

k = 0,1,2, ⋯, the following estimator is proposed in . 

                               α̃ = (
1

n
∑ ξ(tk)2n

k=0 )1/2                       (3.8)  

Also in the work of Hu, and Song(2011), the central limit type and Berry-Esseen type results 

are obtained not only for Brownian motion but also for fractional Brownian motions. 

We can use the quadratic variation method to estimate λ 

                               λ̂2 =
∑ (ξ(tk+1)−ξ(tk))2n−1

k=0

T
                       (3.9) 

The maximum likelihood estimator for λ is also given by 

                          λ̂2 =
α

n
(ξn − ξn̅)

T
M−1(ξn − ξn̅)                     

(3.10)             

Where M = (m(i, j))0≤i,j≤n  is the covariance matrix of ξn = (ξ(t1), ⋯ , ξ(tn))T  with 

mij = 1 − e−α|ti−tj|  and ξn̅ = E(ξn). Finally for the unknown parameter σ , we make the 

transformation Z(t) = log (S(t). Then it is well-known one estimator for σ can be 

                               σ̂2 =
∑ (Z(tk+1)−Z(tk))2n−1

k=0

T
                     (3.11) 

The equations (3.3), (3.4), (3.7) (or (3.8)), (3.9) (or (3.10)), and (3.11) can be combined 

to estimate the parameters γ, δ, α, σ.  However, in the above mentioned equations, except in 

(3.11) for the estimate of σ,  we have to use x or ξ in our estimators. since we can only 

observe {S(t0), S(t1), S(t2), ⋯ , S(tn)}  and as a consequence we can only observe  

{y(t1), y(t2), ⋯ , y(tn)}. So x(t) or ξ(t) can not be used in our estimators since it is not  

available.  

To overcome this difficulty, an EM algorithm was proposed in the work of Frydman 

and Lakner(2003). Here we propose a different approach, namely to use the Kalman filtering 

techniques (see Theorem 2.1). This approach of using Kalman filter is much simpler conceptually 

and is also much easy to implement. 

Let £t
y′

= σ(y′(s), 0 ≤ s ≤ t)  be the σ -algebra generated by the observation 

process y' up to time instant t.  Then £t
y′

 contains all the information available up to time t. 

The best estimation of ξ(t) in the mean squares sense based on the information  £t
y′

 is given 

by ξ̂(t) = E(ξ(t)|£t
y′

),  the conditional expectation of ξ(t) with respect to the σ-algebra  



£t
y′

. This quantity ξ̂(t) can be computed through the Kalman filter. In fact, from Theorem 2.1 

we have  

                   {
dξ̂(t) = −(α + P)ξ̂(t)dt − Pdy′(t)

ξ̂(0) = Eξ = ξ(0) =  λδ
                (3.12)  

where P(t) satisfies the following linear Riccati equation  

                   {
Ṗ =  λ2 − P2 − 2αP
P(0) = cov(ξ0) = 0

                            (3.13) 

The equation (3.13) is a common ordinary differential equation. It can be solved by a 

simple technique of variable separation. The equation (3.12) is a linear stochastic differential 

equation. It can be solved also easily. We have the following proposition for their solutions. 

Proposition 3.1 The solutions to (3.12) and (3.13) are given by the following  

ξ̂(t) = e−αt−∫ P(s)ds
t

0 (λδ − ∫ eαs+∫ P(r)dr
s

0 P(s)dy′(s)
t

0
)  (3.14) 

P(t) = ρα,λ [1 − 2 (1 +
ρα,λ+α

ρα,λ−α
e2tρα,λ)

−1

] − α)        (3.15) 

where ρα,λ = √α2 + λ2. 

4  Algorithm to find the estimators 

Now we can summarize our estimators. Denote θ = (α, δ, λ, γ) the parameters in our equation. 

Firstly  we define 

      y′(t, θ) =
1

σ
log (

S(t)

S(0)
) +

σ

2
t − (λδ + γ)t                                      (4.1) 

      P(t, θ) = ρα,λ [1 − 2 (1 +
ρα,λ+α

ρα,λ−α
e2tρα,λ)

−1

] − α                               (4.2) 

     ξ̂(t, θ) = e−αt−∫ P(s,θ)ds
t

0 (λδ − ∫ eαs+∫ P(r,θ)dr
s

0 P(s，θ)dy′(s，θ)
t

0
)                 (4.3) 

     x̂(t, θ) = δ −
ξ̂(t,θ)

λ
                                                        (4.4) 

where ρα,λ = √α2 + λ2. 

Since we observe {S(t0), S(t1), S(t2), ⋯ , S(tn)}, and y′ is the function of the S(t) and θ, we 

have {y′(t1 , θ), y′(t2, θ), ⋯ , y′(tn,θ)} available. Based on these values of y', we can compute 

(ξ̂(t, θ), 0 ≤ t ≤ T) and  (x̂(t, θ), 0 ≤ t ≤ T). We substitute ξ and x in (3.3), (3.4), (3.7), (3.9) 

and use Itô-Riemann sums to approximate the stochastic integral.  Thus we obtain the following 

estimators. 

                    α̂ = −
n ∑ ξ̂(ti,θ)(ξ̂(ti+1,θ)−ξ̂(ti,θ))n−1

i=1

T ∑  ξ̂(ti,θ)2n
i=1

                             (4.5) 

                      λ̂2 =
∑ (ξ̂(tk+1,θ)−ξ̂(tk,θ))2n−1

k=0

T
                                 (4.6) 

                    γ̂ =
y′(T,θ)−y′(0,θ)

T
−

λ̂ ∑ x̂(ti,θ)n
i=1

n
                               (4.7) 

                    δ̂ =
x̂(T,θ)

 α̂T
−

1

n
∑ x̂(ti, θ)n

i=1                                   (4.8) 

                    σ̂2 =
1

T
∑ (log(S(ti+1)) − log(S(ti)))

2n−1
i=1                       (4.9) 



Use the relation between (α, β, ϑ, μ0) and (α, λ, γ, δ), we can have the estimators for  the 

original parameterθ = (α, β, ϑ, μ0).We shall not write them down in this paper. Actually, we 

haveβ = λσ, μ0 = γσ and ϑ = βδ + μ0. 

5  Simulation 

The solution to the equation (1.1), namely S(t) = μ(t)S(t)dt + σS(t)dW(t ) with the original 

value S(0) is given by  

                   S(t) = S(0)exp {σW(t) −
σ2

2
t + ∫ μ(r)dr

t

0
}                     (5.1) 

The  hidden Markov process, namely the solution to 

                   dμ(t) = α(ϑ − μ(t))dt + βdw′(t)                            (5.2) 

can also be expressed explicitly as 

                μ(t) = μ0e−αt + ϑ(1 − e−αt) + βe−αt ∫ eαsdw′(s)
t

0
                 (5.3) 

We shall use the equations (5.1) and (5.2) to simulate a sample of the process of S(t). 

Take T=10, n = 1000  and  h = ti − ti−1 =
T

n
=

1

100
.  Given some parameters θ =

(α, δ, λ, γ), we can use (5.1) and (5.2) to obtain a sample path of S(t). 

The estimation of the parameter σ by the formula (4.9) uses only the observed values. It 

can be handled separately. In our simulation we choose σ = 2. The estimated value σ̂ of σ by 

the estimator (4.9) is 2.0335 which is very close to the original value 2. 

Table 1: Estimators and the information for the unknown parameters 

 Real value Interval Step length Estimated value Error 

α 2 [0.2,5] 0.2 1.6560 0.3440 

β 1 [0.2,5] 0.2 0.1396 0.8614 

ϑ 1 [0.2,5]    0.2 2.0948 1.0948 

μ(0) 2 [0.2,5]    0.2 2.1308 0.1308 

We use (4.5)-(4.8) to estimate the other parameters α, β, ϑ and μ0. Because both sides of 

the above equations contain the estimated parameters we have in principle to solve some system 

of algebraic equations for the form z = g(z). This can be done by using the Newton's method. If 

the solution to h(z) = z − g(z) is between a and b (for example h(a) < 0 andh(b) > 0) and if 

h(c) > 0,  where  c =
a+b

2
, then one knows there is a solution to z = g(z) between a and c. 

Since we are now in more than one dimension. Motivated by this algorithm we device the 

following scheme to find the solution to (4.5)-(4.8).We choose the values of the parameters as 

α = 2, β = 1, σ = 2, ϑ = 1,  μ0 = 2. With these values we simulate μ(t) and then S(t). To 

use the simulated values S(t) to estimateα, β, ϑ and μ0, we suppose that we know α ∈ [0.2,5],  

β ∈ [0.2,5],  ϑ ∈ [0.2,5], μ(0) ∈ [0.2,5]. Then we uniformly partition the above domain of the 

parameters into small regions. For α  we set α(t1) = 0.2 ,  α(t2) = 0.4, ⋯ , α(t25) = 5 . In 

general, we set α(ti) = ih and h = 0.2 For β we set  β(ti) = ih1 , i = 1,2, ⋯ ,25, h1 = 0.2. 

For ϑ we set ϑ = ih and h =0.2. Forμ0 we set μ0(ti) = ih and h =0.2. Since all the functions 

in our models are continues, there must have one point in the domain of parameters that is 

closest  to the solution. Using this method we get the estimation point α = 1.6560, β =

0.1396, ϑ = 2.0948 ,μ0 = 2.1307. 
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