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Aggregate Investor Preferences and Beliefs in Stock Market: A Stochastic 

Dominance Analysis 

Abstract 

This paper analyzes whether market portfolio is efficient related to benchmark portfolios formed on 

size, value, momentum and reversal with various utility theories by using stochastic dominance 

criteria. Our results support prospect theory including assumption of loss aversion at monthly and 

yearly horizons, which indicate the market utility is S-shaped, and steeper for losses than for gains. 

However the findings don’t provide convincing evidence for positive skewness preference. Therefore, 

it should probe into asset pricing model and financial puzzles by prospect theory preferences. And, in 

the market, it may be difficult to benefit from the asset through its features on skewness, or other 

higher order central moment. In addition, for testing stochastic dominance efficiency, we also develop 

several bootstrap procedures that have favorable property in statistical size and power. 

 

Keywords: Stock market efficiency; Bootstrap; Stochastic dominance; Prospect theory; Loss aversion; 

Skewness preference 
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 Aggregate Investor Preferences and Beliefs in Stock Market: A Stochastic 

Dominance Analysis 

1. Introduction 

The aggregate of investor preferences and beliefs in stock market is the starting point of economics 

study and finance research, and is a much-debated topic in financial economics. Several asset pricing 

anomalies suggest that the market portfolio is significantly mean-variance (MV) inefficient relative to 

the stock portfolios formed on variables such as market capitalization (size), book-to-mark equity ratio 

(value), price momentum, and price reversal.1 So it should extend or change traditional quadratic form 

utility to understand the market. Moreover, various risk preferences should be investigated with the 

pricing model by introducing alternative classes of utilities. 

This paper uses the implied risk preferences to test three popular and competing utility theories. The 

first is the traditional expected utility theory with the assumption of global risk averse, that is, the 

utility function is everywhere concave. The second is the prospect theory (PT) of Kahneman and 

Tversky (1979), which assumes an S-shaped utility function that is risk seeking for losses and risk 

averse for gains,. The third theory, named Markowitz utility theory stemming from Markowitz (1952) 

and Thaler and Johnson (1990), indicates that contrary to prospect theory with a reverse S-shaped 

utility, that is, investors may risk averse for losses and risk seeking for gains. 

The paper adopts stochastic dominance (SD) method, introduced by Hadar and Russell (1969), 

Hanoch and Levy (1969), to identify aggregate risk preferences. Considering anomalies, it analyzes 

whether the market portfolio is SD efficient relative to benchmark portfolios formed on size, value, 

                                                        
1 See for example, Fama and French, 1992, 1993, 1996; Jegadeesh and Titman, 1993; Conrad and Kaul, 1998. However, 

Levy and Roll (2010) thought the market portfolio is significantly MV inefficient with ex-post parameters, but it may be not 
true with ex-ante parameters. However, Levy and Roll (2010) also considered their research doesn’t constitute a proof of the 
empirical validity of the CAPM, but it shows that the model can not be rejected. Moreover, their research also didn’t examine 
other type preferences. Hence, it also can’t reject any other type preference. 
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momentum and reversal with various preferences. 

And, we find the bootstrap method of Post and Levy (2005) may easily commit Type I error (rejecting 

the null when it is true). Therefore, we develop two bootstrap testing procedures for SD efficiency. One 

procedure adjusts the bootstrap statistic of Post and Levy (2005) corresponding to various significance 

levels. Another procedure shifts the entire distance between the original estimator of statistic and zero, 

which is an extended implementation of the method of Linton et al. (2005) for a critical estimation 

with full-sample bootstrap. However, there is a boundary effect, which may result in inconsistent in 

the bootstrap statistics. Hence, following the Simar and Wilson (1998), we also introduce the 

smoothed bootstrap statistics. The simulation shows the statistics of the new bootstrap procedures have 

favorable statistical properties for both size and power with large sample size. Even with small sample 

size, the statistics also have satisfactory statistical size. 

Moreover, we further impose restriction of three order derivative on utility function to examine 

skewness preference. Many empirical evidences imply that the perception of risk is more complex 

than variance. Especially, the phenomena of positive skewness2 and kurtosis preference3 have 

attracted much attention among scholars. Accounting for the kind of preference, we adopt the SD 

criterion of Wong and Chan (2008) and extend the empirical examination for the assumption of 

positive skewness preference. 

Furthermore, we test SD conditions that catch an important aspect of PT, namely, loss aversion as 

suggested by Benarzi and Thaler (1995, 1999). Baucells and Heukamp (2006) put forward loss 

aversion play a central role in behavioral decision research in PT. It captures the psychological 

intuition that losses loom larger than gains, and is very important explanation for many economic and 

                                                        
2 See for example, Kraus and Litzenberger, 1976; Friend and Westerfield, 1980; Harvey and Siddique, 2000. 
3 See for example, Dittmar(2002). 
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financial puzzles.4 Here, we incorporate the feature with preference condition, which introduced by 

Wakker and Tversky (1993), into SD criterion of S-shaped utility to analyze investor behavior. 

In addtion, we investigate the market efficient not only on monthly data but also on yearly data. 

Hansson and Persson (2000) put forward the recommendation that investors with long investment 

horizons tilt their portfolios toward stocks is commonplace and an investor can gain from time 

diversification. Recently, Levy and Duchin (2004) also considered the investors are diverse at their 

planned investment horizons and the optimal investment decision of an investor may change at 

different horizons. The study on yearly data will discover the affection of longer horizon on asset 

equilibrium price and aggregate preferences. However, our evidences of yearly data are the same as 

those of monthly data, which are consistent with the prospect theory of Kahneman and Tversky (1979) 

and indicate the aggregate preferences are satisfied with an S-shaped utility function and assumption 

of loss aversion. The findings provide profound understanding of the capital market and asset pricing 

for investment horizon. 

The remainder of this paper is organized as follows. Section 2 reviews methods of empirical study 

on aggregate preferences and the method of SD. Section 3 introduces the SD efficiency criteria. 

Section 4 investigates the test statistics on bootstrap methodology. The section also puts forward new 

bootstrap test procedures. Section 5 presents empirical findings of the aggregate investor preferences 

of US stock market. Finally, section 6 gives the conclusions. 

2. The aggregate preferences and stochastic dominance method 

2.1. The research of aggregate preferences 

Many researchers investigate the individual risk preference mainly by psychological experiments. 

                                                        
4 For example, the endowment effect (Thaler, 1980), and equity premium puzzle (Benartzi and Thaler, 1995, 1999). 
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However, the experimental and empirical results show that people's preferences are diverse. Moreover, 

there is much controversy about the experimental results.5 

Furthermore, stock market is a complex system, which is a network of heterogeneous components 

that interact nonlinearly, to give rise to emergent behavior. Mauboussin (2002) considered that it is not 

possible to understand the stock market by paying attention to individual analysis. So it can’t inference 

the aggregate preferences straightforward by individuals risk preferences. 

Other studies presuppose risk preference of investor and examine the specific preference. However, 

Post (2003) considered economic theory gives minimum guidance for the specification of utility 

function.6 Thus, even the examination can not reject their presuppose preference, you can not confirm 

the assumption is the only correct option because you haven’t test any other risk preference. So the 

results are not sufficient. 

To better understand the aggregate preferences of the market, it can not depend too much on the 

researches for individual, especially on the experiments for individual. Moreover, it should not just test 

whether the aggregate preferences is consistent with a presuppose risk preference alone. It should 

examine various risk preferences under a general framework and find out the aggregate preferences of 

the market. 

Recently, to circumvent these problems, scholars use SD method to study the aggregate preferences7 

by various criteria for different risk preferences. Firstly, it can directly analyze the aggregate 

preferences rather than individual preference by using the benchmark portfolios and market portfolio. 

                                                        
5 For example, Levy and Levy (2002) considered they find support for the Markowitz utility function in an experiment, 

which is the opposite of the PT. However, Wakker (2003) pointed that all the data of Levy and Levy are perfectly consistent 
with the predictions of the PT, if they don’t neglect the probability weighting function. Baltussen, Post and Van Vliet (2006) 
further put forward that they find severe violations of the PT and the Markowitz utility in a classroom choice experiment with 
mixed gambles and moderate probabilities.   

6 In various assumptions, only non-satiation can be accepted widely. 
7 For example, Post and Levy (2005) analyzed the aggregate preferences of American stock market; Fong et al (2008) 

investigated the aggregate preferences of internet stocks. 
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Secondly, the data is generated from the market, which is the real reaction of investors. Thirdly, the SD 

criteria can rely only on general preference and belief assumptions because they do not require a 

parametric specification. 

2.2. Tests for stochastic dominance 

The existing tests for SD include asymptotic method and bootstrap approach. However, the 

asymptotic testing procedures lack statistical power. Bootstrap can account for sampling error and deal 

with true distribution, and it can yield more powerful results. Therefore, the paper focuses on the 

methodology of bootstrap. 

Simar and Wilson (1998) elaborated the sensitivity on efficiency scores by a general bootstrap 

methodology. They proposed a bias-adjusted idea which measures the efficiency related to a 

non-parametric condition based on observed data resulting from an underlying data generating process 

(DGP), which can be well used in situations where the sampling distribution is difficult or impossible 

to obtain analytically. The method can be viewed as a Mean Bias (MB) bootstrap, and an important 

procedure on the analysis of non-parametric efficiency scores. 

Post and Levy (2005) introduced a bootstrap statistic for test of SD efficiency based on MB. They 

also adopted various SD criteria with restrictions on first order and second order derivative of utility 

function, and tested the market portfolio efficiency to investigate the aggregate investor preferences in 

the face of infinitely many choice alternatives using the bootstrap statistic and an asymptotic statistic 

developed by Post (2003). 

But, we find that the statistic of MB may underestimate the bias-corrected magnitude when the 

statistic is not obeying the symmetrical distribution. In this case, the test will have high frequency on 

rejecting the null when it is true.  
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In the paper, we introduce new bootstrap statistics and take them compare with the bootstrap 

statistic of Post and Levy (2005), and re-examine the aggregate preferences of investors like Post and 

Levy (2005) for risk averse and risk seeking. Furthermore, we extend the examination for positive 

skewness preference and loss aversion. 

3. Stochastic Dominance Efficiency Criteria 

3.1. General Model 

As Post and Levy (2005), it considers a single-period, portfolio-based model of a competitive capital 

market. Supposing that the investment universe consists of N  assets, one of which is a riskless asset, 

we use the index set {1,..., }NI  to denote the different assets with N  for the riskless asset. The 

excess returns Nx  are treated as 1N   random variables and 0 with a continuous joint 

cumulative distribution function (CDF) ( ) : [0,1]NG    .8 Investor may diversify among the assets, 

and we use Nλ  for a vector of portfolio weights belong to the portfolio possibilities set 

T{ : 1}N
  Λ λ λe .9 The assumption excludes short selling and risk-free borrowing because it 

doesn’t affect the latter test of the market portfolio.10  

The utility :u   is defined on excess return, which is differentiable and increasing. Investors 

select portfolio Tx τ  to maximize the expected utility. It represents all admissible utility functions by 

U   { : ( ) 0, }u u x x    , with ( )u x  for the marginal utility.11 Note that Post (2003) and Post 

and Levy (2005) assume { : ( ) 1, }U u u x x    . However the definition doesn’t allow utility to 

be weakly increasing. To circumvent the problem, we let zero as lower bound of ( )u x .  

                                                        
8 Throughout the paper, it uses N  for an N-dimensional Euclidean space, and N

  denotes the positive orthant. To 
distinguish between vectors and scalars, we use a bold font for vectors and a regular font for scalars.  

9 Moreover, in this paper, all vectors are column vectors and it uses Tx  for the transpose of x . And e  denotes a unity 
vector with dimensions conforming to the rules of matrix algebra. 

10 The detailed discussion sees Post and Van Vliet (2006). 
11 For the assumption of non-satiation, the marginal utility is non-negative. 
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Actually, the CDF is generally not known, and information is typically limited to a discrete set of 

time series observations, say 1( , , )KX x x . Here, T
1 , ,( )k k Nkx x x .12  

Supposing that the observations generated from the CDF are independent random variables and 

since the timing of the draws is inconsequential, the observations are free to be labeled by their 

ranking with respect to the evaluated portfolio, i.e., 1( , , )KX x x  with T T T
1 2 K  x τ x τ x τ , 

and indexed by 1{ }K
kk   . Using the observations, we can construct the empirical distribution 

function (EDF) as: 

 
1

1
( ) 1( )

K

k
k

F
K 

 x x x  (1) 

By using ( )F x  in place of CDF ( )G x , it may characterize different empirical distribution of SD 

efficiency criteria by different classes of utility functions, associated with different sets of restrictions 

on marginal functions by: 

 ( ) { : ( ) ( ), ( , ) }U u U u x u y x y        (2) 

Here, 2   represents the restrictions that are placed on marginal utility.  

Definition 1. Portfolio Λτ  is empirically ( )U SD   efficient if and only if: 

   T T

( )
min max ( ) ( ) ( ) ( ) 0

u U
u dF u dF

  
   

λ Λ
λx x x τ x  (3) 

    T T

( )
min max ( ) ( ) 0k k

u U k
u u K

   
 

λ Λ
λx x τ  (4) 

Alternatively, portfolio Λτ  is empirically ( )U SD   inefficient if and only if: 

    T T

( )
min max ( ) ( ) 0k k

u U k
u u K

   
 

λ Λ
λx x τ  (5) 

According to the efficiency criteria, Post (2003) and Post and Levy (2005) put forward a test 

statistic for SD criteria. The test essentially checks if the necessary first-order condition for portfolio 

optimality holds for some utility function ( )u U  . Specifically, if the portfolio Λτ  is optimal 

                                                        
12 Note Post and Levy (2005) use t and T to stand for time. They also use T to represent the transpose operator. In order to 

make a distinction, we use k and K for time. 
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for some utility function ( )u U  , i.e., Targ max ( ) ( )u dG



λ Λ

λτ = x x  then all assets must lie on or 

below the tangent hyperplane, that is: 

 T T( )( ) ( ) 0,iu x dG i     Ix τ x τ x  (6) 

The first-order condition for optimality relative to the EDF, i.e., Targ max ( ) /
k

u K



λ Λ

λτ = x , is the 

following sample equivalent of (6):  

 T T( )( ) 0,k k ik
k

u x K i


     Ix τ x τ  (7) 

It introduces K-stage linear utility function with the intercept 1( , , ) K
K  α and the slope 

1( , , ) K
K  β . So, β  represents the gradient vector  TT T

1( ),..., ( )Ku u x τ x τ  for some 

( )u U  . Introducing a variable  , the test statistic is then yielded: 

  T

( ),
( , ( ), ( )) min : ( ) / 0,k k ik

B k
F U x K i


   

  
       I

β
τ x x τ  (8) 

with 

  T T( ) 0, : , , : ( , )
K

k s k sB k s        β x τ x τ  (9) 

The admissible set ( )B   represents the restrictions on the gradient vector that follow 

characteristics of the specific utility function. The test statistic ( , ( ), ( ))F U τ x  basically 

measures the smallest possible maximum pricing error relative to the well-behaved utility function. 

Consequently, the statistic can be viewed as an efficiency measure. 

Theorem 1. Portfolio Λτ  is empirically efficient if and only if ( , ( ), ( )) 0F U  τ x . 

Alternatively, portfolio Λτ  is empirically inefficient if and only if ( , ( ), ( )) 0F U  τ x .  

Here, the objective is to test the null hypothesis that portfolio Λτ  is empirically efficient by the 

examination of ( , ( ), ( ))F U τ x , i.e. 0 : ( , ( ), ( )) 0H F U  τ x . Moreover, the test statistic 

involves a linear objective function and can impose a finite set of linear constraints for various 

preferences. Consequently, the test statistic can be easily solved by using straightforward linear 
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programming. 

3.2. Linear constraints for risk averse and risk seeking 

Considering both on risk averse and risk seeking behavior, there are three SD criteria are most 

concerned by scholars, which includes Second-order Stochastic Dominance (SSD), Prospect 

Stochastic Dominance (PSD) and Markowitz Stochastic Dominance (MSD). We adopt the different 

criteria accounting for first and second derivative of utility function, which based on three different 

sets of restrictions on marginal utility, i.e., SSD  for SSD, PSD  for PSD, and MSD  for MSD. 

Using z  for the first observation in the domain of gains, T T
1 0z z x τ < x τ . Then, it can be 

obtained that13: 

  1 2( ) 0, :
K

SSD KB         β  (10) 

  1 2 1 1( ) 0, : ;
K

PSD z z z KB                 β  (11) 

  1 2 1 1( ) 0, : ;
K

MSD z z z KB                 β  (12) 

SSD indicates decision-making and equilibrium under uncertainty traditionally use expected utility 

functions with the assumption of non-satiation and global risk averse, that is, the utility is monotone 

increasing and concave everywhere. However, there is compelling evidence that many decision 

makers are risk seeking.  

In view of the PT, Levy and Wiener (1998) presented PSD corresponding to the S-shaped utility that 

is convex for losses and concave for gains (risk seeking for losses and risk averse for gain).14 The 

criterion makes the important points that people might be both risk averse as well as risk seeking. 

Moreover, the criterion is supported by psychological experiments and can explaining many financial 

                                                        
13 Note that the definition of   is different from Post (2003) and Post and Levy(2005) because we let zero as lower bound 

of ( )u x .  
14 Gains and losses are typically measured relative to a subjective reference point. As Post and Levy (2005) and Fong et al 

(2008), we set reference point at zero. The use of excess returns implies that the nominal reference point effectively equals 
the riskless rate. 



11 

market anomalies.15 

However many researchers consider that the behavior of investors may be contrary to the PT. In 

particular, investors are more risk seeking following gains and more risk averse following loses, and a 

reverse S-shaped utility function may be more descriptive of actual behavior.16 Levy and Levy (2002) 

developed MSD for the reverse S-shaped utility function, which is also an important criterion to 

understand the market preferences.17 

3.3. Linear constraints for positive skewness preference 

For the positive skewness preference, it pays attention to third derivative of utility function. 

Considering the preference, Whitmore (1970) put forward three-order SD (TSD) criterion for risk 

averse. Recently, Wong and Chan (2008) extended the criteron for both risk averse and risk seeking. 

According to them, we also impose three different sets of restrictions on marginal utility following 

equations (10), (11) and (12), i.e., T SSD  for SSD, T PSD  for PSD, and T MSD  for MSD, with 

skewness preference. Essentially, the restriction is (.) 0u   whether for risk averse or risk seeking. 

And, it can be obtained that: 

  1 2 2 3 1
1 2

T T T T T T
2 1 3 2 1

( ) 0, : ;
K K K

T SSD K

K K

B
        





                
 β

x τ x τ x τ x τ x τ x τ
 (13) 

 

 1 2 1 1

1 2 2 3 1 1 1 2 1

T T T T T T T T T T T T
2 1 3 2 1 1 2 1 1

( ) 0, : ; ;

;

K

T PSD z z z K

z z z z z z K K

z z z z z z K K

B      

           

  

    

    

         

                  

 

 

β

x τ x τ x τ x τ x τ x τ x τ x τ x τ x τ x τ x τ

 (14) 

 

 1 2 1 1

1 2 2 3 1 1 1 2 1

T T T T T T T T T T T T
2 1 3 2 1 1 2 1 1

( ) 0, : ; ;

;

K

T MSD z z z K

z z z z z z K K

z z z z z z K K

B      

           

  

    

    

         

                  

 

 

β

x τ x τ x τ x τ x τ x τ x τ x τ x τ x τ x τ x τ

 (15) 

3.4. Linear constraints for loss aversion 

                                                        
15 See for example, Kahneman and Tversky (1979), Tversky and Kahneman (1992), Benartzi and Thaler (1995), Barberis 

and Huang (2001) and Barberis et al (2001). 
16 See for example, Markowitz (1952) and Thaler and Johnson (1990). 
17 Levy and Wiener (1998) confined MSD rule only to non-extreme outcomes, i.e., the reversed S-shaped range of the 

Markowitz utility. 
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Loss aversion means investors are distinctly more sensitive to losses than to gains, which is an 

important feature of PT. It is expressed mathematically as a steeper utility function for losses than for 

gains. Wakker and Tversky (1993) introduced a corresponding condition possessing the preference, 

which defines the class of utility function as follows18: 

 ( ) { : ( ) ( ), 0}U u U u x u x x         (16) 

For the EDF, the condition entails comparisons between the negative and the positive domain. 

According to them, we also impose restrictions on marginal utility following equation (11), i.e., 

LA PSD  for PSD with loss aversion. It also uses z  for the first observation in the domain of 

gains, T T
1 0z z x τ < x τ . Then, it can be obtained that: 

  1 2 1 1

T T T
1

T T

( ) { 0, : ; ;

, | , ;

, | }

K

LV PSD z z z K

i j j i j

i K i K

B

i z j z

i z

     
 

 

  



         
    

   

 β

x τ < x τ x τ

x τ x τ

 (17) 

4. Statistics and Inference 

The EDF is very sensitive to sampling variation and the test results are likely to be affected by 

sampling error in a non-trivial way. So, statistical method must be employed to make inferences about 

the true efficiency classification. In this section, we discuss the test procedures developed by Post and 

Levy (2005) and propose new bootstrap testing procedures.  

4.1. The mean bias statistic of bootstrap 

Since the estimator of   is obtained from finite samples, the corresponding measures of efficiency 

are sensitive to sampling variations of the obtained frontier. The values of   are often overestimated. 

Simar and Wilson (1998) proposed a bootstrap strategy through reasonable assumptions regarding the 

DGP to analyze the sensitivity of estimator of the efficiency measure.  

                                                        
18 Baucells and Heukamp (2006) considered the condition is stronger than the condition originally put forward in 

Kahneman and Tversky (1979). 
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The strategy is based on the idea that the known bootstrap distributions will reproduce the original 

unknown sampling distributions of the estimators of interest. Supposing that a DGP, p , can be 

obtained by a reasonable estimator p̂  from the observed data. For the SD efficiency statistic  , let 

̂  be the estimator with the observed sample, and b̂  be the estimator with bootstrap pseudo-sample. 

Then, we have: 

 ˆ ˆ ˆˆ( ) | ~ ( ) |b    p p  (18) 

Simar and Wilson (1998) thought the bias of ̂  for  , i.e., ˆ( )bias E   p p  can be obtained 

from its bootstrap estimation, i.e., ˆ ˆ
1

1ˆ ˆ ˆ ˆ( )
B

b b
b

bias E
B

   


   p p , and B  is the number of 

bootstrap pseudo-samples. Here, both biasp  and ˆbiasp  are mean bias. Post and Levy (2005) 

considered the bias-corrected statistic of b̂  should be shifted by ˆ2biasp , i.e.: 

 ˆ,
1

1ˆ ˆ ˆ ˆ ˆ2 2 2
B

b MB b p b b
b

bias
B

    


       (19) 

 Here, ,b̂ MB  is called the Mean Bias (MB) statistic which shifts the distance of bootstrap statistic 

by the mean bias. Post and Levy (2005) also bootstrapped pseudo-samples with B  times. Then, it 

arrives at the probability: 

 ,
ˆ#{ 0}MB b MBP B   (20) 

At the significance level of a , it rejects the efficiency when MBP a  and accept the efficiency 

when MBP a .  

For the efficient portfolio 0   and supposing ˆ ˆ ˆˆ( ) | ~ |b   p p ~F , we get: 

 ˆ
ˆ ˆ ˆ2 2 ( )b b pbias E    p  (21) 

In this way, the bias-corrected estimators ,b̂ MB  are centered at ˆ ˆ ˆ( )bias E    p p . They 

adjust the distance of the bias between the original estimator and the mean of the bootstrap estimators. 

When ̂  is relative large at extreme right-hand quantile of distribution ˆ | p , i.e., the MBP  is 
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smaller than a given significance level, it can reject the efficiency assumption. Otherwise it should 

accept the assumption. For the efficient portfolio, 0  , we assume a sample estimator of   is 

1ˆ a  , which is at quantile 1 a  of distribution p . Considering an estimator of a bootstrap 

pseudo-sample of the sample is 01 ,ˆ a a
b  , with 01 , 1ˆ ˆ( )a a a

b    at quantile 0a  of p̂ . Then 

0 01 , 1ˆ ˆ ˆa a a a
b      because 1 1ˆ ˆ ˆˆ( ) | ~ |a a

b    p p . As 0  , 01 ,ˆ a a
b   can be asymptotically 

viewed as the sum of 1ˆ a   and 0ˆa . Then, we can obtain: 

 0 01 , 1ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ( )) ( ( ))a a a a
p p pb E E E            (22) 

At the significance level of a , we should accept the efficiency assumption when ̂  on the 

left-hand side of (1 )a  quantile of distribution ˆ | p . Then, with 0a a , it should be 

01 ,ˆ ˆ2 ( ) 0a a
pb E    . For 0a a , we can have 01 , 1ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ( )) ( ( ))a a a a

p p pb E E E           . So, if 

ˆ | p  is a symmetrical distribution, we can obtain that 1ˆ ˆ ˆ( ) / 2 ( )a a
pE     , then 

01 ,ˆ ˆ2 ( ) 0a a
pb E    ; thus, it will reject the efficiency when ̂  is larger than the value at (1 )a  

quantile of p  and the probability to make Type I error equals to a. However when the distribution of 

ˆ | p  is asymmetric, such as the distribution with a long right tail or positive skewness, it may 

underestimate the bias-corrected magnitude to b̂  at the right tail. Then, it may result in high 

frequency on ˆ ˆ2 ( ) 0b pE   , and the probability to make Type I error is greater than a . Therefore, 

the statistical size of MB is sensitive to the shape of distribution. 

4.2. The level adjust mean bias statistic of bootstrap 

For general distribution, in order to make the probability of Type I error equal to a  at the 

significance level of a , we can define the bias of the MB statistic by estimating: 

 1 1
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( )) ( ( )) 2 ( )a a a a a
MB p p b b pbias E E E               (23) 

For a , it can calculate the bias-corrected statistic as: 
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 1
, ,

ˆ ˆ ˆ ˆ ˆ ˆ2a a a
b LAMB b MB MB b b bbias            (24) 

Here, ,b̂ LAMB  is called the Level Adjust Mean Bias (LAMB) statistic which adjusts the bias of MB 

statistic at specific significance level. Bootstrapping pseudo-samples with B  times, it arrives at the 

probability: 

 ,
ˆ#{ 0}LAMB b LAMBP B   (25) 

At the significance level of a , the efficiency is rejected when LAMBP a  and accepted when 

LAMBP a . If the distribution ˆ | p  is symmetrical, it can asymptotically yield 0a
MBbias  . Then, the 

procedures of LAMB and MB yield consistent results. But, if the distribution is characterized by a 

long right tail or positive skewness, the procedure of LAMB will involve more favorable statistical 

size. Furthermore, whatever the shape of distribution ˆ | p  is, the LAMBP  is always asymptotically 

equal to the predefined level of the significance. So, the statistical size of LAMB is not sensitive to the 

shape of distribution. 

4.3. The entire-distance bias statistic of bootstrap 

Linton et al. (2005) proposed a full-sample bootstrap procedure for estimating the critical values of 

a suitably extended Kolmogorov-Simrnov test for SD amongst the K-competing states. The procedure 

computes the bootstrap distribution of the statistic conditional on the original sample and takes the 

critical value from the distribution. Here, we extend the method for our SD efficiency test.  

According to equation (18), ˆ ˆ( )b   can be viewed as a reasonable estimator for ˆ( )  . So, the 

interval of ˆ( )   can be obtained from the distribution of ˆ ˆ( )b  . For the efficiency portfolio, 

0  , it can compare the quantile of ̂  in the distribution of ˆ ˆ( )b   with the specific 

significance level to test the SD efficiency. Then, it defines 

 ,
ˆ ˆ ˆ
b EDB b     (26) 
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Here, ,b̂ EDB  can be called the Entire Distance Bias (EDB) statistic which shifts the distance of 

bootstrap statistic by the entire distance between the original estimator and zero. And, the probability 

is calculated with B times bootstrap pseudo-samples: 

 ,
ˆ ˆ#{ }EDB b EDBP B    (27) 

At the significance level of a , it rejects the efficiency when EDBP a  and accepts the efficiency 

when EDBP a . Considering the efficient portfolio, since 1ˆ a   is at quantile (1 )a  of p , it is 

known that 1
,

ˆ ˆ a
b EDB    only if 1

,
ˆ ˆ( )a
b EDB    on the right-hand side of (1 )a  quantile of p . 

Otherwise, 1
,

ˆ ˆ a
b EDB   . Consequently, the relative probability, of which the efficient portfolio is 

wrongly classified as being inefficient, is a . The test of EDB directly compares ̂  with the 

distribution of ,b̂ EDB . Hence, the statistical size of EDB is also not sensitive to the shape of 

distribution. It can be found the tests of efficiency by EDB statistic and LAMB statistic will get 

consistent results. 

4.4. The smoothed bootstrap 

Simar and Wilson (1998) addressed the key to valid implementation of the bootstrap is to find a 

reasonable estimate p̂  of the DGP, p . As they discussed, it should chose a consistent estimator of 

the distribution F  of   to establish the validity. Unfortunately, the distribution F̂  by standard 

bootstrapping, which bootstrapped pseudo-samples from the observed sample, will provide poor 

estimator of F . Especially, the estimators of b̂  may produce a large number of ostensibly efficient 

units, and raises boundary problem in the extreme left tail. As suggested by Simar and Wilson (1998), 

one way to improve the estimation of F  is smoothed the standard bootstrap distribution F̂  by 

using the reflection method.19 Formally, we take into account the boundary condition that 0  , and 

                                                        
19 See, Silverman (1986), for details. 
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estimate the kernel density from the set of the 2n  values 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ{ , ,..., , , ,..., }n n        , which are 

symmetrically distributed around 0. Then it can have 

 
1

ˆ ˆ1ˆ ( )
2

n
i i

h
i

G
nh h h

   


    
      

   
 (28) 

Here, (.)  is Gaussian kernel density function; h  is the bandwidth controlling the scale of the kernel 

function, and 1/ 5
2 21.06min( , /1.34)(2 )n nh s r n  . Where 2ns  is the empirical standard deviation of the 

2n  reflected data; 2nr  is interquartile range of the 2n  reflected data. The density estimate of F  is 

then obtained through: 

 ,

ˆ ( ), 0ˆ ( )
0,

h
S h

G if
F

otherwise

 
  


 (29) 

Let *ˆ , 1, 2, ,b b B    are the estimator by standard bootstrapping, and *
b  is a random deviate 

drawn from the standard normal, 1, 2, ,b B  . Now consider the following random generator: 

 
* * * *

*

* *

ˆ ˆ, 0

ˆ( ),

b b b b

b

b b

h if h

h otherwise

   


 

    
 

  (30) 

Then, it can obtain the sequence of the smoothed bootstrap:20 

 
*

2 2

ˆ
1 /

bS
b

h

  



 




 (31) 

Where   and   are the empirical mean and variance of *ˆ , 1, 2, ,b b B   . Thus, the smoothed 

bootstrap procedure is: (1) estimate *ˆ , 1, 2, ,b b B   , by standard bootstrapping; (2) calculate 

* , 1, 2, ,b b B   , with equation (30); (3) compute ˆ ˆ , 1, 2, ,S
b b b B    , with equation (31); (4) 

compute MBP , LAMBP  and EDBP  with equations (20), (25) and (27). 

It can be found that the smoothed procedure will remove many efficient units, i.e., ˆ 0b   

estimated by standard bootstrapping, and reflect the units with 0S
b  . Therefore, comparing the 

distribution of the statistics by standard bootstrapping with by smoothed bootstrapping, it can be 
                                                        

20 See, Efron and Tibshirani(1993), Silverman (1987), and Simar and Wilson (1998), for details.. 
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drawn two conclusions. Firstly, the left tail of the former will fatter than that of the latter.  Secondly, 

the quantiles at the left tail of the former should be smaller than that of the latter.  

Since EDBP  is determined at the right tail of the distribution, the boundary problem should have 

small impact on the standard bootstrap. On the contrary, both MBP  and LAMBP  are determined at the 

left tail of the distribution. Therefore, the boundary problem should influence on the two standard 

bootstrap procedures. However, the influence may be not very clear. For example, for the two 

procedures, the fatter left tail will increase the frequencies to reject the null, while the smaller quantile 

of left tail will decrease the frequencies to decline the null. Since the influence is complex and the 

smoothed method has improved the statistics for the boundary problem, we only compare the standard 

procedure and the smoothed procedure by simulation. 

From what has been stated above, we can’t come to a simple conclusion whether the smoothed procedure 

can involve more favorable statistical size and power or not, though the smoothed bootstrap can improve 

the consistency of the distribution. Then, we will illustrate the comparison by simulation. 

4.5. Simulation experiment 

In order to test the effectiveness of various bootstrap statistics and compare the different approaches, 

we do a simple simulation by 5 risky assets with the 5 Fama and French stock portfolios formed on 

BE/ME and a single riskless asset with the one-month US Treasury bill because a detailed simulation 

will beget a too large computation burden for the statistics of bootstrap. The joint population moments 

are equal to the sample moments of the monthly excess returns of the 5 BE/ME stock portfolios during 

sample period from Jan 1933 to Dec 2007. We draw random samples from the multivariate normal 

population distribution through Monte-Carlo simulation. We analyze two different test portfolios on 
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SD criterion for MV efficiency.21 The first test portfolio is the tangency portfolio (TP), which is MV 

efficient. So, it may analyze the statistical size by the relative frequency of the random samples in 

which this portfolio is wrongly classified as being inefficient. The second test portfolio is the equal 

weighted portfolio (EP), which is known to be MV inefficient. Hence, it may analyze the statistical 

power by the ability to correctly classify the portfolio as being inefficient.22 

[Insert Figure 1 Here] 

Figure 1 shows the mean-variance diagram of excess returns of the 5 portfolios (clear dot), TP, EP, 

as well as the mean-variance efficient frontier (OD). The TP consists of 85.48% and 14.52% invested 

in the third and the fifth BE/ME portfolios (portfolio B3 and B5 in the Figure 1) respectively. And, the 

third and the fifth BE/ME portfolios also construct efficient frontier OD with riskless asset.  

This simulation experiment is performed for sample sizes of 50, 100, 400 and 800, and at 

significance levels of 10%, 5% and 1%. The procedures of the SD tests on the MV efficiency to TP 

and EP are as follows: 

Step 1.  According to the joint sample moment, generate a simulated sample named sample 1 with 

N  observations. Calculate the value of 1,
ˆ

PT  for TP and the value of 1,
ˆ

PE  for EP. Then, generate 

1000 pseudo-samples from the sample 1, and calculate the bootstrap estimators 1, ,
ˆ

j PT , 

1, ,
ˆ ( 1, 2,...,1000)j PE j   for TP and EP respectively. 23  Compute MBP , LAMBP and EDBP , with 

equations (20), (25) and (27), by the standard bootstrap methods and the smoothed bootstrap 

                                                        
21 It adopts SD test on MV efficiency as Post and Van Vliet (2006). The admissible set of the restrictions on the gradient 

vector of MV utility function is  T( ) 0, : , 1,...,
K

MVSD k kB c d k K      β x τ . 
22 The power depends on the degree of inefficiency of the evaluated portfolio. That we use the Sharp Ratio of EP to divide 

the Sharp Ratio of TP measures the degree of the inefficiency of different EPs constructed from different Fama and French 
stock portfolios, which include the 5 portfolios formed on BE/ME, the 5 portfolios formed on size, the 6 portfolios formed on 
size and value, the 6 portfolios formed on size and momentum, and the 6 portfolios formed on size and short-term reversal 
during sample period from Jan 1933 to Dec 2007. The result shows that the degree of the EP constructed from the 5 BE/ME 
portfolios is ‘medium’, which is higher than that of the 6 size and value portfolios and the 6 size and momentum portfolios, 
but lower than that of the 5 size portfolios and the 6 size and short-term reversal portfolios. Hence the paper selects the set of 
the 5 BE/ME portfolios to simulation. 

23 According to Hall (1986), Simar and Wilson (1998) put forward that it can sample 1000 times to ensure adequate 
coverage of the confidence intervals. 
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procedures of Section 4.4 respectively.  

Step 2.  Repeat Step 1 for 999 times. 

Step 3.  Compute the statistical size as the rejection rate for TP and the statistical power as the 

rejection rate for EP. 

[Insert Figure 2 Here] 

Figure 2 shows the kernel density estimation of the distributions to ̂  with various sample sizes. 

The estimation adopts the Epanechnikov kernel function. And, the bandwidths are selected by 

maximizing the likelihood cross-validation function discussed by Silverman (1986). Clearly, the 

distribution of the portfolio TP is asymmetric even with the large sample size, which may result in 

high frequency of the statistic of MB on rejecting the efficient portfolio. 

[Insert Table 1 Here] 

Descriptive statistics for ̂  are also included in Table 1.  

For the portfolio TP, with increasing sample size, the mean and the median approach 0,24 and the 

standard deviation and the range decrease gradually. The skewness is always positive and the kurtosis 

is larger than three. Moreover the test statistic of JB indicates that ̂  is not consistent with the normal 

distribution. Especially, the statistic of JB also indicates the positive skewness is significant as the 

curve of TP in figure 2, which may results in lower statistical size with the MB statistics. 

For the portfolio EP, the mean and median trend to decline with increasing sample size. The 

standard deviation and the range also decrease gradually. However, the skewness and the kurtosis 

decline much faster than those of the TP. The test statistic of JB also declines much more significantly. 

[Insert Table 2 Here] 

                                                        
24 Since TP is MV efficient, the value of   is 0. Consequently, it is likely that ̂  is gradually close to 0 when the sample 

size increases. 
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Table 2 includes statistical properties of the statistics. It includes the statistical size and power of the 

different bootstrap procedures for various sample sizes and at different significance levels. The results 

of TP give the size of the statistics and the results of EP show the power of the statistics. Each cell 

includes both the results of the standard and the smoothed bootstrap, and the result of the former is in 

the bracket. 

For both the standard and the smoothed bootstrap statistics of MB 

As the sample size increases, both the statistical powers increase obviously. In fact, at the 

significance level of 10%, both powers of the two statistics beyond 0.8 with sample size of 800. 

However, both statistical sizes of the two statistics always exceed the nominal significance level and 

don’t show a downward trend with increasing sample sizes. Consequently, for the two statistics, both 

probabilities of Type I error are greater than the corresponding significance level with any sample size. 

As previously analyzed, since the distribution of ̂  is characterized with positive skewness and fat 

right tail, the two statistics of MB should underestimate the bias, which results in high possibility of 

abandoning the true.  

For both the standard and the smoothed bootstrap statistics of LAMB and EDB 

It can be found that the four procedures have roughly consistent performances. The rejection rates 

for the efficient portfolio TP are always close to the significance level with any sample size, even with 

small sample size of 50. However, the rejection rates for TP as the efficient portfolio are always less 

than those of the corresponding MB statistics. All of the four statistics lack power with small sample 

sizes. Fortunately, the test powers of the two statistics also increase obviously with increasing sample 

size. For example, with a sample size of 800, all of the p-values of the four procedures are beyond 0.5 

at the significance level of 5%. 
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Comparing the smoothed bootstrap statistics and the standard bootstrap statistics 

For the statistics of EDB, as we expect that the boundary problem have little influence on the 

standard bootstrap, both the standard and smoothed procedures have consistent performance on tests 

not only of TP but also of EP. The boundary problem should affect the results on the standard 

procedure of MB, for the test of TP, but both the statistical sizes of the standard and smoothed 

procedures of MB are similar, and it can’t find significant change of the smoothed bootstrap. Moreover, 

we also can draw the same conclusion on the standard and smoothed procedures of LAMB for the test 

of TP. Interestingly, for the test of EP by using the method LAMB, all of the statistical powers of the 

standard procedure are lower than the smoothed procedure. However, the opposite evidences can be 

found on the test of EP by using the method MB. Therefore, there is no reliable evidence to suggest 

how effect on the statistical power result form the boundary problem. 

In summary, our simulation findings are in line with the theoretical discussion in Section 4.4. Firstly, 

it can be found that the statistics of LAMB and EDB by using smoothed bootstrapping and the EDB 

by using standard bootstrapping own the best statistical properties. All of them appear sufficiently 

powerful to be of practical use in application. Though there is left boundary problem, it should have 

minimal effect on the standard bootstrap of EDB because the statistic is determined at the right tail of 

the distribution of ̂ . Secondly, the smoothed MB statistic prefers to classify the efficient portfolio 

incorrectly as being inefficient even in large sample for the shape of the distribution of ̂ . Especially, 

it should act with caution when the statistic reject the null with significant asymmetric distribution of 

̂ . But, the property of the power of the statistic is better than both statistics of the smoothed LAMB 

and the smoothed EDB.25 Thirdly, for the standard procedures of LAMB and MB, the asymptotic 

                                                        
25 This paper does not adjust the bias of the MB statistics for skewness as Efron (1987), which center the median of the 

distribution on the statistics. Since the distribution is positive skewness in most cases, the correction of the skewness will 
result in the increasing occurrence probability of Type I error. 
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properties of the statistics are very vague with the boundary problem. 

5. Empirical results  

5.1. Data 

Post and Levy (2005) analyzed aggregate investor preferences and beliefs by testing whether the 

SSD, PSD or MSD criteria could rationalize the market portfolio on monthly data. They used two sets 

of benchmark portfolios, i.e., 25 Fama and French benchmark portfolios from Jul 1963 to Oct 2001, 

and 27 benchmark portfolios formed on value, size and momentum from Jul 1963 to Dec 1994, which 

is described in Carhart et al. (1996) and is used in Carhart (1997). Using the monthly data, we also 

investigate the aggregate preferences and beliefs by examining whether the CRSP all-share index, a 

popular proxy for the stock market portfolio, is efficient with the three SD criteria. To improve the test 

power, we focus on a longer 75-year sample period from Jan 1933 to Dec 2007 with 900 monthly 

observations. In addition, we also examine on yearly data. The sample period is from 1933 to 2007 

with 75 observations. This paper analyzes three sets of benchmark portfolios including the 25 Fama 

and French benchmark portfolios formed on size and value, the 25 portfolios formed on size and 

momentum, and the 25 portfolios formed on size and short-term reversal.26 These three sets of 

benchmark portfolios can capture the effects of size, value, momentum and reversal. To calculate the 

excess returns, we subtract the risk-free rate, which is defined as the US one month T-bill rate 

maintained by Ibbotson. All data are obtained from the data library on the homepage of Kenneth 

French.  

[Insert Figure 3 Here] 

                                                        
26 The Fama and French market portfolio can not be constructed exactly as a convex combination of the benchmark 

portfolios. Therefore, the proxies for the individual assets include the market portfolio as the 27th asset. For the inefficient 
portfolio, the approach does not affect the test results. But, for the efficient portfolio, it forces the test statistic to take a zero 
value. 
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Figure3 shows the six sets of benchmark portfolios in mean and standard deviation space on both 

monthly and yearly excess returns. The figure includes the individual assets (the clear dots), the 

market portfolio (MP), the mean-variance tangency portfolio (TP), and the mean-standard deviation 

frontier (O-TP). Obviously, on both the monthly and yearly data, the MP is inefficient in terms of 

mean-variance analysis related to all benchmark sets. These empirical mean and standard deviation 

diagrams do not reveal whether the mean-variance classification is statistically significant or not.  

[Insert Table 3 Here] 

Table 3 provides some descriptive statistics for excess returns of the portfolios. It addresses the 

skewness that plays an important role in analyzing of aggregate preferences and portfolio efficient. For 

example, both declining absolute risk aversion and risk seeking imply positive skewness preference, 

and the MV efficient can be safely employed only in the case of elliptical distribution of returns, 

which is a class of symmetric distribution. We give the significance of skewness at the 5% level with 

t-test, i.e., 
6 ( 1)

( 2)( 1)( 3)

n n
t skewness

n n n




  
, where n  is sample size. On monthly data, it can be 

found that the majority of market portfolio and benchmark portfolios has significant positive skewness, 

and only three benchmark portfolios have significant negative skewness, and the remaining three 

benchmark portfolios don’t have significant skewness. On yearly data, it also can be seen that there are 

many portfolios with significant positive skewness. But the number only is 44, which is much less 

than the number of monthly data. Moreover, all of the other portfolios don’t have significant skewness. 

Obviously, the results of monthly data are very different from Levy and Duchin (2004). They found 

that logistic distribution, which is a special case of the elliptical, fits individual asset returns and 

portfolio returns best. However, we illustrate a remarkable positive skewness of the returns with 

different sample period and different portfolios. Moreover, it also indicates the elliptical distribution 
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can be rejected in most cases. Though we can’t further evaluate the difference between their results 

and our results, our results still provide strong negative evidences to the MV efficient. 

Now, we can’t obtain more information about the risk profile of assets unless the investor utility is 

quadratic. In addition, the figure and the table constructed by ex post data have little statistical sense, 

and are silent on loss aversion. Those provide the motivation for testing whether the market portfolio 

is efficient in terms of different SD criteria with various utilities. 

5.2. Full-sample results for risk averse and risk seeking 

We adopt the bootstrap test procedures are as follows: firstly, generate 2000 pseudo-samples 

ˆ
bX , 1, , 2000b    and calculate the ˆ ( )b   for each pseudo-sample; secondly, calculate the MBP , 

LAMBP  and EDBP  with both the standard and the smoothed methods. To obtain more convincing 

results, it also calculates the asymptotic statistic PVP  referring to Post and Van Vliet (2006). Here, 

reject the efficiency if the p-value is smaller than or equal to the significance level of 5%. 

[Insert Table 4 Here] 

Table 4 summarizes the results of the SSD, PSD and MSD criteria for full-samples.  

The results of the asymptotical statistics provide little meaningful information about the aggregate 

investor preferences to us. The statistic can not reject the null for all of the three sets of benchmark 

portfolios with all of the three SD criteria except the 25 size and short-term reversal portfolios with 

MSD criterion on monthly data. It may result from low statistical power of the statistic.27  

Fortunately, it can learn about the aggregate investor preferences from the bootstrap tests. 

Furthermore, the results of the standard and the corresponding smoothed bootstrap procedures are 

consistent. Based on the results, the SSD criterion performs the worst and PSD criterion performs the 
                                                        

27 Post and Van Vliet (2006) considered the test of Post (2003) may lead to erroneous conclusion about the true efficiency 
classification. So they relaxed the restrictive null of Post (2003) to give protection against the error, which class the efficient 
as inefficient. Though their test involves a more favorable statistical size, the test has a less favorable statistical power in 
detecting inefficient portfolios in small samples. 
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best not only on monthly data but also on yearly data.  

The market portfolio is significantly SSD inefficient for all of the six bootstrap statistics with all of 

the three sets of benchmark portfolios on both monthly and yearly horizon. Consequently, we reject 

the SSD criterion. These results are in line with those of Post (2003) and Post and Levy (2005). It is 

suggested that no concave utility function can rationalize the market portfolio. And it also indicates 

that the MV efficient with quadratic utility should be surely denied, which confirms the results of the 

skewness in table 3. Hence, the aggregate of the investor preferences should be not globally risk 

averse, and we should pay more attention to investigate the local risk seeking behavior. 

The MSD criterion is rejected by all of the six bootstrap statistics with all of the three sets of 

benchmark portfolios on yearly data and with the 25 size and short-term reversal portfolios on 

monthly data. At the significance level of 5%, all of the p-values of bootstrap procedures are close to 

zero. In addition, the MSD criterion is also rejected by both the standard and smoothed statistics of 

MB with the 25 Fama and French benchmark portfolios on monthly data. These results apparently 

indicate that the reversed S-shaped utility function cannot rationalize the market portfolio. 

The PSD criterion only has been rejected by the standard and smoothed statistics of MB with the 25 

size and short-term reversal portfolios on monthly data, while all of the p-values of the four LAMB 

and EDB statistics are large than 0.125. And it can be found the b̂ ’s skewness(=1.422)  is positive. 

The Section 4.1 suggests the statistics of MB may commit Type I error when the skewness of the 

distribution of ̂  is positive. In addition, the simulation also shows that the statistical sizes of MB 

statistics are often greater than the desired level of significance. Therefore, the results of LAMB and 

EDB should be more reliable. Then, the prospect theory established by Kahneman and Tversky (1979) 

may be best to capture investor preferences, which indicates that the aggregate utility is S-shaped. 
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We think the results of PSD and MSD are different from many experimental evidences supporting 

reverse S-shaped preferences, but the results don’t deny those results of experiments because the 

individual preferences is not equal to the aggregate preferences as discussed in Section 2.1. 

The results of PSD and MSD are opposite to Post and Levy (2005). We consider our results may be 

more reasonable. There are four main reasons. Firstly, we test the efficiency by using a larger sample 

size, including pre-1963 period and post-2001 period. And with increasing sample size, the power of 

the bootstrap statistics will be greatly improved. Secondly, the statistics of MB has smaller statistical 

size than both of the statistics of LAMB and EDB in identifying the efficient portfolio. Thirdly, we 

standardize betas by 1 1T
tt T  , which consider weakly increasing and decreasing to utility letting 

beta equal to zero, which Post and Levy (2005) didn’t account for. Fourthly, we also study on yearly 

data and the results strengthen our findings of monthly data, which give strong backing to the 

S-shaped preferences rather than the reverse S-shaped preferences. 

5.3. Results of rolling window analysis for PSD 

To obtain more convincing results, we further employ a rolling window analysis on monthly 

horizon. With 60-month steps, we consider all 240-month samples from Jan 1933 to Dec 2007. We 

compute the p-values of the tests of PSD including all of the 12 subsamples.  

[Insert Table 5 Here] 

Table 5 reports the results. For the tests by the asymptotic statistic, it can be observed that we accept 

the PSD efficiency in most cases, and only reject the PSD efficiency in subsample 9 with the 25 Fama 

and French benchmark portfolios and the 25 size and momentum benchmark portfolios. At the same 

time, it can be found that we accept the PSD efficiency in all of subsamples with all of the bootstrap 

statistics. Hence, our findings are robust. It also indicates that the risk preferences of the market don’t 
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change through time, and the tests of market portfolio efficiency don’t affected by time variation of 

sample. 

To sum up, we can believe that the rolling window results further reinforce our conclusion that the 

market is PSD efficient and the aggregate utility of investors is S-shaped. The investors are 

risk-aversion for gains and risk-seeking for loses. Then, they are willing to pay a premium for stocks 

that give downside protection in the bull market and upside potential in the bear market. 

5.4. Results for positive skewness preference 

Considering positive skewness preference, we test PSD efficiency with linear constraints as 

equation (14) and the results are shown in Table 6. The asymptotical statistics also can not reject the 

null for all of the three sets of benchmark portfolios on both monthly returns and yearly returns. 

However, all of the bootstrap statistics reject the assumption on skewness preference for the sets of the 

25 size and short-term reversal portfolios on monthly data. Moreover, all of the bootstrap statistics also 

deny the assumption on skewness preference for the sets of the 25 size and momentum portfolios on 

yearly data.  

[Insert Table 6 Here] 

In fact, the table also illustrates the results of various bootstrap procedures are not exactly the same. 

For example, for the 25 size and short-term reversal portfolios on yearly returns, the statistic of 

smoothed MB is 0.0009, which is less than 5%, while all of the remaining bootstrap statistics don’t 

reject the null. Since the b̂ ’s skewness(=0.982) is positive, the smoothed MB procedures may be 

erroneously declined efficient portfolio. However, the statistics of LAMB and EDB are very close to 

5% with the maxima is 0.0675. 

On all accounts, our empirical evidences don’t entirely support positive skewness preference. It 
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should not be surprised with our results of skewness preferences, which have been discussed in a 

number of previous researches. Barberis and Huang (2008) considered it is hard to forecast a security’s 

future skewness: past skewness, the most obvious potential predictor, has little actual predictive power. 

The time variation in skewness also can be found from our empirical results. Table 3 in our paper, for 

the 25 Fama and French portfolio, shows the skewness of twenty three portfolios is significant positive. 

On the contrary, for the 25 Fama and French portfolio, from the table 1 in Post and Levy (2005), only 

four portfolios are with positive skewness but not anyone is significant, and all of the remaining 

twenty one portfolios are with negative skewness and fourteen are significant, due to different sample 

period. In addition, the time variation of skewness also may be the vital to reconcile our study with 

Levy and Duchin (2004). Here the results don’t fully deny the skewness preference in other theory 

analyze and experiments. But, in the real market world, the skewness of asset is time variation. We 

think it is a reasonable ground for the aggregate preferences don’t have skewness feature. And it also 

indicates that one should be caution with the idea of profiting by skewness. 

5.5. Results for loss aversion 

The tests on PSD efficiency inspires us to further examine the assumption of loss aversion with the 

restrictions referring to equation (17), and the results are shown in Table 7. The evidences strong claim 

the loss aversion is a prominent feature of the aggravate preferences. On both the monthly and yearly 

returns, for all of the asymptotical statistics and the bootstrap statistics, the assumption of loss aversion 

can’t be declined. The discovery can help us understand the equity premium when the market 

representative investor has the prospect theory preferences.28 

[Insert Table 7 Here] 

                                                        
28 See, Benartzi and Thaler (1995). 
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5.6. Investment horizon 

The practitioners’ advices indicate that the optimal investment decision rule is horizon dependent. 

However, it is a controversial view.29 Many related researches only narrow to a specific utility 

function, especially with the MV preferences. Our study imposing less restrictive assumptions on 

utility function examines various preferences, so the conclusions are more general. Our results only 

fully confirm the PT preferences, with S-shaped utility and loss aversion, rather than expected utility 

preferences and Markowitz utility preferences. Hence, the results indicate who study the investment 

horizon should be under the framework of PT instead of other utility theory. For example, Levy and 

Duchin (2004) found the asset return is with logistic distribution on short horizon, but with positively 

skewness distribution on long horizon. It implies strong support for MV preferences at short horizons 

and the optimal investment decision of an investor should change at long horizons. But, it can’t know 

what aggregate preferences has the market at long horizons. Our results of descriptive statistics in 

table 1 and the analysis of time variation of the skewness on monthly data have challenged the finding 

at short horizon of Levy and Duchin (2004). And, the results of SD test further declined the conclusion 

of Levy and Duchin (2004) at short horizon. In addition, the examination of SD also suggests the 

market equilibrium should be reached with PT preferences at monthly horizon and yearly horizon. So 

it also provides a stimulus for further research of market puzzles based on PT at different horizons. 

Our results suggest it doesn’t change the type of the aggregate preferences from monthly horizon to 

yearly horizon. Firstly, the individual investor may be various in his planned investment horizon. However, 

the preference of the representative investor is always PT preference. Secondly, the results don’t mean the 

degree of risk aversion, risk seeking and loss aversion of the aggregate preferences is entirely independent 

                                                        
29 For example, it can see the supportive evidences from Hansson and Persson (2000), Levy and Duchin (2004), and the 

oppositive findings from Samuelson (1994), Bodie, Merton and Samuelson (1992). 
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on investment horizon. Unfortunately, it can’t compare the degree at different horizons. Because Post and 

Levy (2005) had stressed that the example utility functions, estimating by the SD testing, are not unique. 

6. Conclusions 

It can be argued that the bootstrap procedures of smoothed LAMB, smoothed EDB and standard 

EDB are useful for analyzing the SD efficiency. And，the three statistics own the best statistical 

properties for both size and power with large sample size. Even with small sample size, they also have 

satisfactory statistical size. Moreover, it can be concluded that the bootstrap tests of MB may easily 

commit the Type I error.  

Many asset pricing anomalies are hard to understand in the context of the expected utility paradigm 

and globally risk-aversion preference. Under a very general framework of risk preference, the paper 

investigates the aggregate investor preferences and beliefs of the US stock market by examining 

enduring puzzles in finance: market size, value, price momentum, and price reversal effects in stock 

returns. Fortunately, it can be seen that inferences about the aggregate preferences in our study are not 

heavily affected by the exact test procedure. Moreover, at monthly and yearly horizon, the findings are 

consistent. Our results reject SSD efficiency of the market portfolio. Thus it should pay particular 

attention to non-expected utility theories and risk seeking preference for further research. Moreover, 

our results reject the criterion of MSD, on the contrary, accept the criterion of PSD. Encouragingly, 

our examination also accepts loss aversion-a vital assumption in the framework of the PT. Therefore, 

the market is efficient and the prospect theory may be a more prominent non-expected utility theory. It 

also suggests the aggregate utility function of the representative investor is in line with the PT, who 

will adopt different risk attitudes when they face various prospects. The aggregate of investors’ 

preferences is not globally risk-aversion, but risk-aversion for gains and risk-seeking for losses, and 
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more sensitive to losses, i.e., the utility is S-shaped, and steeper for losses than for gains. Therefore, it 

should probe into asset pricing model and financial anomalies by S-shaped and loss aversion 

preferences. In fact, the study of Barberis and Hung (2008) show PT can exactly produce the CAPM 

formula. Thus, the S-shape risk preference may be suffices to explain many asset pricing anomalies. 

However, our examination isn’t convincing of positive skewness preference. Furthermore, the 

results also can reject kurtosis preference and higher order preferences. Hence, in the market, it may 

be difficult to benefit from the asset through its features on skewness, kurtosis, or other higher order 

central moments. 

It should be noted that our results only can illustrate the aggregate investor preferences of the 

market, and can’t reveal the preferences for individuals. Hence, it can’t reject skewness preference, 

kurtosis preference or higher order preferences for individual. For the researchers, who deeply believe 

higher order preferences, we consider the examination may provide a stimulus for further research for 

differences between the aggregate behavior characteristics and individual behavior features. And, our 

study also can’t decline the expected utility preference, the Markowitz utility preference, and the MV 

preference for individual. However, it is worth mentioning that our findings may reveal the general 

laws of the market. In the further, it should attach importance to studies on heterogeneous components 

and emergent behavior, which may result in disappearance of individual preferences in aggregate view.  

Of course, it is doubtful whether the results are trustworthy because the SD test assumes that return 

observations are serially identical and independent distributed (IID). Fortunately, Sharpe (2007) 

showed that an investor who holds the market portfolio will satisfy an equilibrium equation30 in the 

static-state by the analysis of marginal utility and state prices. The equation is consistent with the 

                                                        
30 The equation is T T T T( ) ( ) ( ) ,k k k ik k fk k ku K u x K u r K i          Ix λ x λ x λ x λ , with fr  is risk free rate. 
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first-order condition for optimality of our test. Therefore, our results may not be biased by the IID 

assumption.  

In addition, there are reasons to doubt the reliability of the findings because we only test with 

ex-post parameters. Recently, Levy and Roll (2010) found slight variations in parameters, well within 

estimation error bounds, suffice to make the market proxy MV efficient. Their findings also suggested 

ex-ante MV efficiency is consistent with the observed parameters. How can our research be reconciled 

with their study? Firstly, their results mainly inference the efficient based on the parameters are 

“closest” their observed sample rather than the population parameters. Levy and Roll (2010) also 

considered their research doesn’t constitute a proof of the empirical validity of the CAPM, but it 

shows that the model can not be rejected. Secondly, our SD method is testing for the efficiency of a 

given portfolio with respect to the utility with all possible parameters for one type preference instead 

of a utility with specific parameters only. Thirdly, the bootstrap procedures inference the efficient 

statistics in view of the bias with sampling variation, and it is encouraging to see that our results, 

including descriptive statistics, SD statistics of full sample, and SD statistics of rolling window on 

different horizon, support each other. Hence, we consider the influence of parameters on our 

systematic results should be little. 
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Table 1   
Descriptive statistic of the stochastic dominance efficient statistics. It contains descriptive statistic of the statistics ̂  for 
stochastic dominance criterion with mean-variance (MV) efficient. It analyzes two different test portfolios for various
sample sizes (T= 50, 100, 400, 800). The first test portfolio is the tangency portfolio (TP), which is MV efficient. The second 
test portfolio is the equal weighted portfolio (EP), which is known to be MV inefficient. JB is test statistic of Jarque-Bera, 
and * is significance at the 1% level at least. The results are based on 1000 random samples from a multivariate normal 
population distribution with joint moments equal to the sample moments of monthly excess returns of the 5 Fama and French 
BE/ME stock portfolios and the one-month US Treasury bill during the period from Jan 1933 to Dec 2007.  

Portfolio TP EP 

Sample size  50 100 400 800 50 100 400 800 

Mean 0.2390 0.1484 0.0610 0.0409 0.2836  0.1958 0.1162 0.0971 

Median 0.1932 0.1186 0.0426 0.0277 0.2481  0.1778 0.1073 0.0940 

Maximum 1.6994 1.0179 0.3973 0.2749 1.6909  0.9561 0.4117 0.2866 

Minimum 0.0000 0.0000 0.0000 0.0000 0.0081  0.0129 0.0185 0.0132 

Standard deviation. 0.2144 0.1418 0.0676 0.0452 0.1743  0.1119 0.0551 0.0372 

Skewness 1.4282 1.4330 1.3808 1.3229 1.9236  1.6840 1.0583 0.7284 

Kurtosis 6.5945 6.2737 5.0401 4.7199 10.6096 9.0407 5.0848 4.4432 

JB 878.317* 788.828* 491.186* 414.941* 3029.486* 1993.093* 367.765* 175.208*
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Table 2   
Statistical properties of different bootstrap procedures. It includes the statistical size and power of the different bootstrap 
procedures for mean-variance efficient by stochastic dominance criterion with various sample sizes (T= 50, 100, 400, 800)
and significance levels (10%, 5%, 1%). It shows the probabilities that a given portfolio is classified as efficient with 
bootstrap statistics by the mean bias procedure ( MBP ), the level adjust mean bias ( LAMBP ), and the entire distance bias 
procedure ( EDBP ). The results of tangency portfolio (TP) give the size of the statistics and the results of the equal weighted 
portfolio (EP) show the power of the statistics. Each cell includes both the results of the standard and the smoothed 
bootstrap, and the result of the former is in the bracket. The results are based on 1000 random samples from the multivariate 
normal population distribution with joint moments equal to the sample moments of monthly excess returns of the 5 Fama 
and French BE/ME stock portfolios and the one-month US Treasury bill during the period from Jan 1933 to Dec 2007. And 
all of the bootstrap statistics are computed with 1000 preudo-samples. 

Portfolio  TP   EP  

Significance level  10% 5% 1% 10% 5% 1% 

T=50       

MBP  0.142 
(0.142) 

0.084 
(0.078) 

0.025 
(0.025) 

0.211 
(0.214) 

0.130 
(0.139) 

0.057 
(0.072) 

LAMBP  0.121 
(0.117) 

0.050 
(0.049) 

0.007 
(0.008) 

0.155 
(0.153) 

0.065 
(0.064) 

0.011 
(0.011) 

EDBP  0.121 
(0.118) 

0.050 
(0.048) 

0.008 
(0.009) 

0.155 
(0.154) 

0.065 
(0.064) 

0.011 
(0.011) 

T=100       

MBP  0.138 
(0.135) 

0.083 
(0.084) 

0.030 
(0.030) 

0.278 
(0.288) 

0.207 
(0.214) 

0.090 
(0.107) 

LAMBP  0.124 
(0.121) 

0.053 
(0.053) 

0.008 
(0.008) 

0.228 
(0.226) 

0.114 
(0.113) 

0.016 
(0.015) 

EDBP  0.124 
(0.123) 

0.053 
(0.053) 

0.008 
(0.008) 

0.228 
(0.229) 

0.012 
(0.113) 

0.015 
(0.016) 

T=400       

MBP  0.145 
(0.138) 

0.094 
(0.083) 

0.035 
(0.024) 

0.602 
(0.604) 

0.492 
(0.497) 

0.264 
(0.289) 

LAMBP  0.132 
(0.131) 

0.063 
(0.058) 

0.011 
(0.011) 

0.537 
(0.537) 

0.337 
(0.333) 

0.106 
(0.09) 

EDBP  0.132 
(0.130) 

0.059 
(0.058) 

0.010 
(0.011) 

0.536 
(0.578) 

0.336 
(0.333) 

0.101 
(0.095) 

T=800       

MBP  0.144 
(0.137) 

0.093 
(0.076) 

0.047 
(0.032) 

0.811 
(0.814) 

0.717 
(0.727) 

0.482 
(0.512) 

LAMBP  0.132 
(0.130) 

0.055 
(0.055) 

0.012 
(0.014) 

0.767 
(0.761) 

0.579 
(0.574) 

0.233 
(0.221) 

EDBP  0.132 
(0.130) 

0.054 
(0.055) 

0.012 
(0.013) 

0.767 
(0.763) 

0.575 
(0.574) 

0.231 
(0.227) 
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Table 3   
Descriptive statistics of portfolios. It contains descriptive statistic for the excess returns of portfolios on both monthly and 
yearly data. The excess returns are computed from the raw return observations by subtracting the return on the one-month 
US Treasury bill. The portfolios include the CRSP all-share index, the 25 Fama and French benchmark portfolios formed on 
size and value, the 25 portfolios formed on size and momentum, and the 25 portfolios formed on size and short-term 
reversal. The monthly sample period is from Jan 1933 to Dec 2007 and the yearly sample period is from 1933 to 2007. Here, 
S.D. is standard deviation, and Ske is skewness, and Kur is Kurtosis. * represents the skewness is significance at the 5% level 
at least. All data are obtained from the data library on the homepage of Kenneth French. 

   Monthly Data Yearly Data 

  Mean S.D. Ske Kur Mean S.D. Ske Kur 

 Market Portfolio 

  0.731  4.833   0.137*  6.498  9.415 18.955 -0.083 -0.008 

BE/ME Size 25 Fama and French Portfolio 

Growth Small 0.600  10.792   1.818* 14.879  6.661 36.495  0.728* 1.107 

2 Small 0.996  9.502   3.736* 52.700 12.548 33.411  0.495* 0.446 

3 Small 1.201  8.294   1.884* 16.482 15.868 31.563 0.320 -0.088 

4 Small 1.375  7.876   3.075* 38.042 18.960 35.032  1.276* 3.856 

Value Small 1.551  8.742   3.296* 35.739 21.339 37.967  1.316* 3.616 

Growth 2  0.777  7.833   0.445*  5.623 10.133 30.464 0.369 -0.072 

2 2 1.106  7.282   1.939* 23.942 14.495 29.359  1.099* 3.956 

3 2 1.188  6.810   2.210* 26.177 16.070 28.882  0.918* 2.652 

4 2 1.246  6.895   1.839* 21.144 17.060 30.676  1.237* 4.106 

Value 2 1.369  7.687   1.297* 12.997 18.272 31.220  0.619* 1.087 

Growth 3 0.821  7.152   0.953*  9.866 10.702 28.393  1.063* 4.973 

2 3 1.018  6.108   0.379*  7.720 13.499 25.199  0.742* 3.262 

3 3 1.078  6.126   1.262* 16.920 14.253 24.736  0.519* 1.103 

4 3 1.147  6.049   1.166* 13.233 15.354 25.472 0.424 0.303 

Value 3 1.268  7.387   1.147* 12.377 16.881 30.060  0.655* 1.013 

Growth 4 0.753  5.830  -0.055   3.127  9.561 21.696 0.128 0.466 

2 4 0.845  5.735   0.833* 13.708 11.026 23.016  1.079* 5.125 

3 4 1.035  5.578   0.382*  7.754 13.691 23.681  0.857* 2.738 

4 4 1.041  5.918   0.686*  8.246 13.969 25.169  0.476* 0.744 

Value 4 1.203  7.655   1.505* 17.412 15.840 32.527  1.630* 5.735 

Growth Big 0.661  4.957   0.137*  4.716  8.521 18.986 -0.171 -0.470 

2 Big 0.682  4.723  -0.042   4.074  8.705 17.104 -0.041 -0.276 

3 Big 0.817  4.811   0.768* 11.205 10.548 18.934  0.690* 1.491 

4 Big 0.874  5.715   1.627* 20.355 11.214 22.332  0.855* 2.628 

Value Big 0.986  6.960   0.913* 11.061 12.580 26.026 0.390 0.672 

Momentum Size 25 Size and Momentum Portfolios 

Low Small 0.688  9.951   2.858* 22.532 10.227 43.130  1.156* 1.843 

2 Small 1.221  8.523   3.907* 46.696 17.290 41.511  2.470* 11.931 

3 Small 1.413  7.868   3.219* 39.932 20.204 40.174  2.236* 9.748 

4 Small 1.646  8.616   4.219* 53.658 23.708 47.153  3.504* 20.608 

High Small 1.794  8.418   1.729* 19.185 25.388 42.537  2.201* 10.108 

Low 2  0.455  8.629   1.669* 14.688  6.116 33.654  0.733* 0.774 

2 2 1.024  7.453   2.631* 27.978 13.937 33.041  2.090* 10.173 

3 2 1.079  6.404   0.982* 11.460 14.380 27.933  1.426* 5.375 

4 2 1.371  6.891   2.271* 30.129 18.986 32.775  1.944* 9.202 



41 

High 2 1.611  7.473   0.764* 10.554 21.939 31.650  0.530* 0.904 

Low 3 0.454  8.145   1.492* 12.252  5.379 27.906 0.213 -0.200 

2 3 0.857  6.681   1.428* 14.303 10.969 25.388  0.744* 2.560 

3 3 0.945  6.159   1.179* 13.459 12.191 23.772  0.495* 1.589 

4 3 1.113  5.905   0.523* 10.539 15.246 27.166  1.228* 4.550 

High 3 1.484  6.759  -0.003  4.785 19.746 26.976 0.193 -0.050 

Low 4 0.452  7.581   0.912* 10.413  5.259 25.630 0.104 0.224 

2 4 0.733  6.276   1.255* 16.099  8.967 21.607  0.591* 1.944 

3 4 0.839  5.824   1.503* 18.635 10.780 22.380  1.095* 5.207 

4 4 1.069  5.654   1.021* 14.765 14.074 23.726  1.828* 8.854 

High 4 1.407  6.241  -0.194*  3.183 18.975 26.904  0.547* 1.187 

Low Big 0.322  7.644  -2.040* 38.759  4.292 28.187 0.021 3.807 

2 Big 0.607  5.439   1.562* 19.415  7.620 18.838 0.068 0.514 

3 Big 0.616  4.948   0.475*  9.757  7.652 17.467 -0.074 0.159 

4 Big 0.817  4.855   0.195*  4.734 10.397 18.129 0.157 -0.067 

High Big 1.046  5.564  -0.269*  2.767 13.887 23.088 0.030 -0.261 

Reversal Size 25 Size and Short-term Reversal Portfolios 

Low Small 2.200  10.092   2.892* 25.527 36.207 83.570   5.122*  35.343 

2 Small 1.459  8.848   2.881* 31.430 20.731 43.498   1.834*  5.691  

3 Small 1.297  8.406   3.343* 35.074 18.154 40.262   2.240*  9.714  

4 Small 0.895  8.270   4.255* 59.368 12.461 33.251  0.376  -0.292  

High Small 0.084  8.494   1.868* 18.157  1.438 30.854   0.506* 0.499  

Low 2  1.737  8.757   2.025* 20.215 25.687 51.917   3.391*  19.099 

2 2 1.423  7.227   1.909* 21.817 19.567 32.179  1.109  4.008  

3 2 1.144  6.915   1.905* 22.275 15.303 27.904  0.416  1.000  

4 2 0.898  7.005   2.305* 27.146 11.743 27.297  0.745  2.274  

High 2 0.348  7.175   0.691* 10.037  4.504 26.394  0.298  0.081  

Low 3 1.561  7.831   0.768*  6.909 21.864 38.608   1.934*  8.232  

2 3 1.215  6.516   0.911*  9.851 16.064 25.490  0.294  1.142  

3 3 1.114  6.361   1.407* 15.389 14.876 26.225   0.669*  2.107  

4 3 0.816  6.137   1.281* 18.800 10.643 23.881  0.389  0.854  

High 3 0.380  6.579   0.685* 11.288  4.547 22.869  0.000  -0.196  

Low 4 1.373  7.380   1.044* 12.258 18.135 29.387  0.415  1.001  

2 4 1.157  5.980   0.495*  8.189 15.051 22.497  0.159  0.653  

3 4 0.976  5.527   0.506*  6.576 12.645 21.480   0.694*  2.294  

4 4 0.760  5.703   1.465* 23.341  9.838 21.451  0.377  1.464  

High 4 0.488  6.220   0.583* 10.851  6.445 26.151   1.732*  8.506  

Low Big 0.931  6.108   0.706*  6.400 11.701 22.205  0.309  0.093  

2 Big 0.841  5.071   0.297*  5.494 11.041 20.099  -0.216  0.009  

3 Big 0.735  4.819   0.421*  6.629  9.523 18.136  -0.287  -0.086  

4 Big 0.686  4.858   1.111* 17.092  8.883 19.258  0.284  0.629  

High Big 0.431  5.406   1.176* 18.797  5.418 19.080  0.161  2.050  
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Table 4   
Results for risk averse and risk seeking. It includes the results of aggregate preferences for risk averse and risk 
seeking, which test whether the market portfolio (i.e., the CRSP all-share index) is efficient on both monthly horizon
(the sample period is from Jan 1933 to Dec 2007) and yearly horizon (the sample period is from 1933 to 2007) by
various stochastic dominance criteria including Second-order Stochastic Dominance (SSD), Prospect Stochastic 
Dominance (PSD) and Markowitz Stochastic Dominance (MSD). It tests the efficient relative to all portfolios formed 
from the one-month US Treasury bill and a set of risky benchmark portfolios (the 25 Fama and French benchmark 
portfolios formed on size and value, the 25 portfolios formed on size and momentum, or the 25 portfolios formed on 
size and short-term reversal). It shows the observed value for the test statistic ̂ , the skewness of the bootstrap 

statistics b̂ , and the p-value that the market portfolio is classified as efficient with asymptotic statistic PVP

referring to Post and Van Vliet (2006), and bootstrap statistics by the mean bias procedure ( MBP ), the level adjust 
mean bias ( LAMBP ), and the entire distance bias procedure ( EDBP ). Moreover, for the bootstrap statistics, they also 
include both the results of the standard and the smoothed bootstrap, and the result of the former is in the bracket. In 
addition, all of the bootstrap statistics are computed with 2000 preudo-samples. Here LAMBP  adjusts for significance 
level of 5%. * represents significance at 5% level at least. 

Criteria ̂  Skewness of b̂ PVP  MBP  LAMBP  EDBP  

Monthly Data 

25 Fama and French Portfolios 

SSD 0.232 0.578 0.7890 0.0010* 
(0.0005*) 

0.0025* 
(0.0010)* 

0.0140* 
(0.0140*) 

PSD 0.013 1.546 1.0000 0.7925 
(0.7815) 

0.9360 
(0.9275) 

0.6650 
(0.6355) 

MSD 0.145 1.422 0.9845 0.0350* 
(0.0290*) 

0.3675 
(0.3880) 

0.1100 
(0.1070) 

25 Size and Momentum Portfolios 

SSD 0.402 0.237 0.5059 0.0000* 
(0.0005*) 

0.0005* 
(0.0005*) 

0.0015* 
(0.0010*) 

PSD 0.083 0.859 1.0000 0.5510 
(0.5350) 

0.7350 
(0.7160) 

0.4150 
(0.4140) 

MSD 0.117 0.756 0.9989 0.3365 
(0.3230) 

0.4380 
(0.3745) 

0.2895 
(0.2820) 

25 Size and Short-term Reversal Portfolios 

SSD 0.546 -0.107 0.0767 0.0000* 
(0.0000*) 

0.0000* 
(0.0000*) 

0.0000* 
(0.0000*) 

PSD 0.128 1.175 0.9929 0.0000* 
(0.0000*) 

0.5140 
(0.4835) 

0.1280 
(0.1260) 

MSD 0.655 0.128 0.0346* 0.0000* 
(0.0000*) 

0.0000* 
(0.0000*) 

0.0000* 
(0.0000*) 

Yearly data 

25 Fama and French Portfolios 

SSD 3.698 0.732 0.8169 0.0000* 
(0.0095*) 

0.0165* 
(0.0130*) 

0.0315* 
(0.0300*) 

PSD 0.570 1.076 0.9996 0.5145 
(0.4850) 

0.7600 
(0.7380) 

0.3310 
(0.3310) 

MSD 5.509 0.476 0.9068 0.0000* 
(0.0000*) 

0.0000* 
(0.0000*) 

0.0105* 
(0.0090*) 

25 Size and Momentum Portfolios 

SSD 5.208 0.443 0.6566 0.0025* 
(0.0025*) 

0.0025* 
(0.0025*) 

0.0090* 
(0.0080*) 

PSD 1.833 0.520 0.9535 0.2215 
(0.2175) 

0.3165 
(0.3240) 

0.1870 
(0.1825) 

MSD 7.914 0.175 0.3642 0.0000* 
(0.0000*) 

0.0000* 
(0.0000*) 

0.0005* 
(0.0000*) 

25 Size and Short-term Reversal Portfolios 

SSD 5.004 0.380 0.7435 0.0000* 
(0.0000*) 

0.0015* 
(0.0120*) 

0.0080* 
(0.0070*) 

PSD 0.588 0.601 0.9998 0.6320 
(0.6175) 

0.7225 
(0.6880) 

0.5860 
(0.5735) 

MSD 7.836 0.094 0.4808 0.0000* 
(0.0000*) 

0.0000* 
(0.0000*) 

0.0005* 
(0.0005*) 
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Table 5   
Results of rolling window analysis for Prospect Stochastic Dominance (PSD). It includes the results of rolling 
window analysis, which test whether the market portfolio (i.e., the CRSP all-share index) is efficient for PSD. With 
60-month steps, it considers all 240-month samples from Jan 1933 to Dec 2007（including 12 subsamples）. It tests
the efficient relative to all portfolios formed from the one-month US Treasury bill and a set of risky benchmark 
portfolios (the 25 Fama and French benchmark portfolios formed on size and value, the 25 portfolios formed on size 
and momentum, or the 25 portfolios formed on size and short-term reversal). It shows the observed value for the test 
statistic ̂ , the skewness of the bootstrap statistics b̂ , and the p-value that the market portfolio is classified as 

efficient with asymptotic statistic PVP  referring to Post and Van Vliet (2006), and bootstrap statistics by the mean 

bias procedure ( MBP ), the level adjust mean bias ( LAMBP ), and the entire distance bias procedure ( EDBP ). Moreover, for 
the bootstrap statistics, they also include both the results of the standard and the smoothed bootstrap, and the result of 
the former is in the bracket. In addition, all of the bootstrap statistics are computed with 2000 preudo-samples. Here 

LAMBP  adjusts for significance level of 5%. * represents significance at the 5% level at least. 

Subsample ̂  
Skewness  

of b̂  PVP  MBP  LAMBP  EDBP  

25 Fama and French Portfolio 

1 0.003 0.956 1.0000 0.8870(0.8845) 0.9520(0.9415) 0.9680 (0.9245) 

2 0.006 1.266 1.0000 0.8985(0.8925) 0.9445(0.9430) 0.9270 (0.9255) 

3 0.017 1.401 0.9998 0.8825(0.8830) 0.9335(0.9345) 0.9075 (0.9130) 

4 0.010 1.422 1.0000 0.8690(0.8675) 0.9385(0.9355) 0.8670 (0.8535) 

5 0.010 1.737 1.0000 0.8660(0.8640) 0.9400(0.9330) 0.8650 (0.8670) 

6 0.023 1.281 1.0000 0.8550(0.8555) 0.9370(0.9410) 0.8825 (0.8850) 

7 0.043 0.901 0.9999 0.8220(0.8225) 0.9140(0.9015) 0.8005 (0.8050) 

8 0.070 0.635 0.8571 0.8750(0.8745) 0.9150(0.9145) 0.8785 (0.8780) 

9 0.162 0.322  0.0493* 0.9105(0.9025) 0.9205(0.9230) 0.9240 (0.9190) 

10 0.106 0.443 0.2189 0.9015(0.9055) 0.9415(0.9435) 0.9315 (0.9410) 

11 0.057 0.874 0.9681 0.8645(0.8670) 0.9240(0.9285) 0.8755 (0.8840) 

12 0.022 0.923 0.9998 0.8680(0.8500) 0.9370(0.9330) 0.8985 (0.8955) 

25 Size and Momentum Portfolios 

1 0.072 0.545 0.9681 0.8555(0.8500) 0.8825(0.8910) 0.8475 (0.8540) 

2 0.057 0.443 0.9981 0.7675(0.7560) 0.8405(0.7955) 0.7385 (0.7385) 

3 0.023 0.543 0.9999 0.8935(0.8840) 0.9175(0.9060) 0.8785 (0.8775) 

4 0.039 1.582 0.9978 0.8535(0.8590) 0.9425(0.9425) 0.9025 (0.9165) 

5 0.064 0.902 0.9347 0.8720(0.8650) 0.9285(0.9280) 0.8825 (0.8900) 

6 0.067 1.037 0.9723 0.8580(0.8585) 0.9280(0.9315) 0.8775 (0.8835) 

7 0.110 0.438 0.9750 0.8485(0.8440) 0.8865(0.8985) 0.8600 (0.8560) 

8 0.065 0.357 0.9696 0.8350(0.8315) 0.8760(0.8710) 0.8225 (0.8195) 

9 0.196 0.062  0.0342* 0.7315(0.7290) 0.7185(0.7325) 0.7280 (0.7185) 

10 0.143 0.679 0.5402 0.6870(0.6930) 0.7985(0.8080) 0.6130 (0.6185) 

11 0.069 0.731 0.9994 0.7990(0.7935) 0.8685(0.8540) 0.7545 (0.7495) 

12 0.037 0.931 0.9999 0.8560(0.8470) 0.9280(0.9190) 0.8485 (0.8420) 

25 Size and Short-term Reversal Portfolios 

1 0.138 0.744 0.9900 0.7755(0.7765) 0.8700(0.8785) 0.7525 (0.7510) 

2 0.054 1.612 0.9498 0.8275(0.8260) 0.9315(0.9335) 0.8430 (0.8470) 

3 0.014 1.871 0.9997 0.8435(0.8380) 0.9405(0.9355) 0.8235 (0.8065) 

4 0.011 2.376 1.0000 0.8300(0.8275) 0.9410(0.9345) 0.7540 (0.7445) 

5 0.005 1.503 1.0000 0.8450(0.8335) 0.9455(0.9395) 0.8735 (0.7970) 

6 0.039 1.683 0.9936 0.7775(0.7800) 0.9085(0.8995) 0.6495 (0.6565) 

7 0.086 1.124 0.9519 0.7640(0.7655) 0.8785(0.8770) 0.6975 (0.6935) 

8 0.032 1.234 0.9905 0.8760(0.8765) 0.9415(0.9425) 0.9145 (0.9215) 

9 0.130 0.798 0.3356 0.7665(0.7635) 0.8740(0.8720) 0.7175 (0.7005) 

10 0.072 1.187 0.6821 0.8455(0.8520) 0.9330(0.9325) 0.8660 (0.8630) 

11 0.053 0.587 0.9453 0.9000(0.8965) 0.9335(0.9270) 0.9090 (0.9125) 

12 0.047 0.693 0.9434 0.8625(0.8655) 0.9110(0.9125) 0.8700 (0.8715) 
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Table 6   
Results for positive skewness preference. It includes the results of aggregate preferences for positive skewness 
preference under the framework of prospect theory, which test whether the market portfolio (i.e., the CRSP all-share 
index) is efficient on both monthly horizon (the sample period is from Jan 1933 to Dec 2007) and yearly horizon (the 
sample period is from 1933 to 2007) with Prospect Stochastic Dominance. It tests the efficient relative to all 
portfolios formed from the one-month US Treasury bill and a set of risky benchmark portfolios (the 25 Fama and 
French benchmark portfolios formed on size and value, the 25 portfolios formed on size and momentum, or the 25 
portfolios formed on size and short-term reversal). It shows the observed value for the test statistic ̂ , the skewness 

of the bootstrap statistics b̂ , and the p-value that the market portfolio is classified as efficient with asymptotic 

statistic PVP  referring to Post and Van Vliet (2006), and bootstrap statistics by the mean bias procedure ( MBP ), the 

level adjust mean bias ( LAMBP ), and the entire distance bias procedure ( EDBP ). Moreover, for the bootstrap statistics, 
they also include both the results of the standard and the smoothed bootstrap, and the result of the former is in the 
bracket. In addition, all of the bootstrap statistics are computed with 2000 preudo-samples. Here LAMBP  adjusts for 
significance level of 5%. * represents significance at 5% level at least. 

̂  Skewness of b̂  PVP  MBP  LAMBP  EDBP  

Monthly Data 

25 Fama and French Portfolios 

0.038 1.430 1.0000 0.6025 
(0.5975) 

0.8590 
(0.8685) 

0.3770 
(0.3570) 

25 Size and Momentum Portfolios 

0.101 0.763 1.0000 0.4520 
(0.4585) 

0.6570 
(0.6160) 

0.3430 
(0.3470) 

25 Size and Short-term Reversal Portfolios 

0.176 1.228 0.9650 0.0000* 
(0.0000*) 

0.0355* 
(0.0000*) 

0.0490* 
(0.0485*) 

Yearly data 

25 Fama and French Portfolios 

1.326 0.982 0.9893 0.0000* 
(0.0000*) 

0.2215 
(0.3090) 

0.0630 
(0.0605) 

25 Size and Momentum Portfolios 

2.848 0.407 0.8540 0.0000* 
(0.0000*) 

0.0035* 
(0.0035*) 

0.0210* 
(0.0240*) 

25 Size and Short-term Reversal Portfolios 

1.743 0.389 0.9812 0.0090* 
(0.0535) 

0.0675 
(0.0615) 

0.05350 
(0.05350) 



Table 7   

Results for loss aversion. It includes the results of aggregate preferences for loss aversion under the framework of 
prospect theory, which test whether the market portfolio (i.e., the CRSP all-share index) is efficient on both monthly 
horizon (the sample period is from Jan 1933 to Dec 2007) and yearly horizon (the sample period is from 1933 to 
2007) with Prospect Stochastic Dominance. It tests the efficient relative to all portfolios formed from the one-month 
US Treasury bill and a set of risky benchmark portfolios (the 25 Fama and French benchmark portfolios formed on 
size and value, the 25 portfolios formed on size and momentum, or the 25 portfolios formed on size and short-term 
reversal). It shows the observed value for the test statistic ̂ , the skewness of the bootstrap statistics b̂ , and the 

p-value that the market portfolio is classified as efficient with asymptotic statistic PVP  referring to Post and Van 

Vliet (2006), and bootstrap statistics by the mean bias procedure ( MBP ), the level adjust mean bias ( LAMBP ), and the 
entire distance bias procedure ( EDBP ). Moreover, for the bootstrap statistics, they also include both the results of the 
standard and the smoothed bootstrap, and the result of the former is in the bracket. In addition, all of the bootstrap
statistics are computed with 2000 preudo-samples. Here LAMBP  adjusts for significance level of 5%. * represents
significance at 5% level at least. 

̂  Skewness of b̂  PVP  MBP  LAMBP  EDBP  

Monthly Data 

25 Fama and French Portfolios 

0.013 1.408 1.0000 0.8335 
(0.8290) 

0.9350 
(0.9305) 

0.8255 
(0.8200) 

25 Size and Momentum Portfolios 

0.083 1.006 1.0000 0.6575 
(0.6495) 

0.8395 
(0.8445) 

0.4950 
(0.4885) 

25 Size and Short-term Reversal Portfolios 

0.128 1.253 0.9926 0.1460 
(0.1320) 

0.6325 
(0.6110) 

0.1610 
(0.1540) 

Yearly data 

25 Fama and French Portfolios 

0.718 0.690 0.9995 0.4930 
(0.4620) 

0.7090 
(0.6960) 

0.3685 
(0.3785) 

25 Size and Momentum Portfolios 

1.961 0.457 0.9458 0.1715 
(0.1720) 

0.2720 
(0.2640) 

0.1645 
(0.1660) 

25 Size and Short-term Reversal Portfolios 

0.588 0.596 0.9999 0.7015 
(0.7055) 

0.7925 
(0.7795) 

0.6570 
(0.6530) 

 

 

 

 

 

 

 

 

 

 

 

  

 


