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Abstract: In this paper, we establish a the LaSalle’s theorem for stochastic differ-
ential equation based on Li’s work, and give a more general Lyapunov function which
it is more easy to apply. Our work has partly generalized Mao’s work.
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1 Introduction

It is well known that LaSalle’s theorem for locating limit set for nonautonomous systems
(see (1], [2]) has become a powerful tool in the study of Lyapunov’s stability of differential
equations. Lill} removed the restriction that the direction derivatives of Lyapunov functions
remain negative, and make it more convenient to apply those results. With the development
of Itd’s stochastic calculus, Lyapunov method has been developed to deal with stochastic
stability by many authors (see [3]-[9]). However there is a few to study LaSalle’s theorem for
stochastic differential equations. Maol®h{*l gave LaSalle’s theorems for stochastic differential
equation. The main of this paper is to establish a somewhat general version of LaSalle’s
theorem for stochastic differential equation, based on Maol®M4 and Lill,

2 An Improvement of LaSalle’s Theorem

First, let us recall some notations. Throughout this paper, unless otherwise specified, we
let (Q, F, {Fi}t>0, P) be a complete probability space with a filtration {F;}>0 satisfying
the usual conditions (i.e., it is right continuous and Fo contains all P-null sets). Let B(t) =
(B1(t), Ba(t), -+ - Bm(t))T be an m-dimensional Brownian motion defined on the probability
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space. Let |- | denote the Euclidean norm in R™. If A is a vector or matrix, its transpose is
denoted by AT. If A is a matrix, its trace norm is denoted by |A] = \/trace(AT A).

we consider the n-dimensional stochastic differential equation

dz(t) = f(z(t), t)dt + g(z(t), )dB(t) (2.1)

on t > 0 with initial value z(0) = zo € R™. Asa standard‘ condition, we impose a hypothesis:

(Hy) Both f : R®» x Ry —» R" and g : R® x Ry — R™ are measurable function.
They satisfy the local Lipschitz condition and the linear growth condition. That is, for each
k=1,2,---, thereis a ¢ > 0 such that

If(z,8) = Fly, )| V Ig(z, t) — gy, )] < cilz -y
for all t > 0 and z,y € R™ with |z| V |y| < k, and there is a ¢ > 0 such that
[f(z, )| V lg(z, t)] < c(1+|z])

for all (z,t) € R x R,.

It is obvious that under the hypothesis (H;) the equation (2.1) has a unique continuous
solution on t > 0 (see [5]), which is denoted by z(¢;zo) in this paper. Moreover, for every
p>0,

E[ sup |z(s;zo)|P] <00, t2>0.
0<s<t

Let C*!(R™ x Ry; R.) denote the family of all nonnegative functions V'(z,t) on (R™ x Ry)
which are continuously twice differentiable in z, and once differentiable in t. Define an
operator L acting on C?!'(R™ x R4 ; Ry) functions by
1
LV (z.t) = Vi(z,t) + Ve (z,8) f(z,t) + itrace[g(m, )T Verg(z, 1)),

where

oV(z,t oV(z,t IV (x,t
Vilz,t) = ((j: )7 Vz(:c,t)=( 8(:1 )7...7 6(; )>,

0%V (z,t
Vez(z,t) = (E%) .
Lt nxn

Moreover, we denote by L!'(R,., R, ) the family of all functions b : R, — R, such that

b(t)dt < oo.
0
We can now give our stochastic version of LaSalle’s theorem as follows.

Theorem 2.1 Let (H;) hold. Assume that there is a function V(z,t) € C>'(R™ x Ry, R),
functions a(t), b(t) € L'(Ry, Ry ), and a continuous function w : R* - R, such that
lim inf V(z,t) =00 (2.2)

&= 00 0<t< 00

and
LV (z,t) < b(t) —w(x) + a(t)V(z,t). (2.3)
Moreover, for each initial value zo € R™ there is a p > 2 such that
sup Elz(t,z0)|? < oo. (2.4)
0<t< oo

Then, for every zo € R™, tlim V(z,t) exists and is finite almost surely, and moreover,
—00

tl_lglo w(z(t,z0)) =0 a.s. (2.5)
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Remark In the case of a(t) = 0 our result is Mao’s result in [3].
In order to prove Theorem 2.1, we need the following useful lemmas.

Lemma 2.1 Let A(t) and U(t) be two continuous adapted increasing processes on t > 0
with A(0) = U(0) = 0 a.s. Let £ be a nonnegative Fy -measurable random variable. Define
X(t)=E+ A@) - U(t) + M(t) fort>0.

If X(t) is nonnegative, then
{tlggo A(t)} C {tlggo X (t) ezists and is finite} N {tgr& U(t) < o0},
where B C D a.s. means P(B N D¢) = Q. In particular, if tl_gr{.lo A(t) < 00 a.s., then for
almost all w € (0
tl_lglo X (t,w) exists and is finite, and tgr& U(t,w) < oo.

This lemma is established by Liptser and Shiryayev (see [10], Theorem 7, p.139). The
next lemma is the well-known Kolmogorov-Centsov theorem on the continuity of a stochastic
process derived from the moment property.

Lemma 2.2 Suppose that an n-dimensional stochastic process X (t) on t > 0 satisfies the
condition
E\X({t)-X(s)|*<Clt-s'*?, 0<s,t<o

for some positive constants o, 8 and C. Then there exists a continuous modification )Z'(t) of
X (t), which has the property that for every v € (0, 8/a), there is a positive random variable
h(w) such that

Plu: sup 1X(t,w) - X(s,w)| < 2
0<t—a<h(w) It - 317 1-2-7
0<s,t <00

In other words, almost every sample path of X’(t) is locally but uniformly Holder- continuous
with exponent .

The proof of this result can be found in [11] in the case when the stochastic process X ()
is on the finite interval [0, T}, but a little bit of modification of the proof is needed for the
case when X (t) is on the entire R, .

Lemma 2.3 Let (Hy) and (2.4) hold. Set

t
W)= [ gal®)5)dBls)  ont20,
0
where we write x(t,x0) = z(t) simply. Then almost every sample path of y(t) is uniformly
continuous on t > 0.

The proof of this result can be found in [3].
Now we give the proof of Theorem 2.1.
Proof. Fix any initial value o and write z(¢,z9) = z(t) simply. Let

Z(8) = exp {— /ot a(s)ds} .
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Applying Itd formula on Z(#)V (z(t),t) and condition (2.3), we have
t
2OV, = Vo) + [ LEZEV(a(),9)ds
0

+ / (Z(s)V (2(s), 8))29(x(s), 5)dB(s)
= V(z0,0)+/; Z(s)(LV (z(s), 8) — a(s)V(z(s), s))ds
+ / Z(s)Va((s), 8)g(z(s), 5)dB(s)
0

IN

V(zo,0)+‘/0‘ Z(s)b(s)ds—/(; Z(s)w(z(s))ds
/ Z()Va(2(s), 8)g(z(s), s)dB(s).

Since

/ b(s)ds < oo, lim Z(t) < oo,
0 t—o00

we have

(e 9]
/ Z(s)b(s)ds < 00, Z(s)w(z(s)) >0
0
By Lemma 2.1, we obtain that for almost every w € Q,
(0]

/ w{z(t,w))dt < oo (2.6)
and

lim V{z(t,w),t) exists and is finite. (2.7)
t—o0

We first claim that almost every sample path of z(t) is uniformly continuous on ¢t > 0. We
write z(t) = zg + 2(¢) + y (t), where

t
/ flz(s),s)ds and y(t):/ g(z(s), s)dB(s).
By Lemma 2.3, (2.6)-(2.7) and hm Z(t) < oo, we see that there is an-Q} C Q with
P(Q) = 1 such that for every w € Q (2 6) and (2.7) hold; moreover, y(t,w) is uniformly
continuous on ¢ > 0. Now, fix any w € 0. By (2.7),

sup V(z(t,w),t) < oo.
0<t <00

Hence, by (2.2), there is a positive number h(w) such that
lz(t,w)] < h(w) for all t > 0.
From this and the hypothesis (H;) we get that for 0 < s <t < 00,
t

2t w) — 2(s,0)| < / | ((ryw), ) dr

IA

c / (1 + () < el 4 H@)(E - 9),

which implies that z(t,w) is uniformly continuous on ¢ > 0. Since w € {2 is arbitrary, we
have proved that for every w € Q, z(t,w) is uniformly continuous on ¢ > 0.
We next claim that
Jim w(z(t,w)) =0 forallwe Q. (2.8)
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If this is not true, then for some & € Q
lim sup w(z(t,w)) > 0.
t—o0
So there is some € > 0 and a sequence {tx}4>1 of positive numbers with t; + 1 < tx4; such
that

w(z(ty, D)) > ¢ for all k > 1. (2.9)

Set S, = {x € R" : |z| < h}, where h = h(®) has been defined above in the way that
{z(t,®) : t > 0} C S4. Since it is continuous, w(-) must be uniformly continuous in Sy and
there is a 4; > 0 such that
lw(z) — w(y)| < g if 2,y € S, |z — y| < 61 (2.10)

On the other hand, recalling that x(t,&) is uniformly continuous on ¢ > 0, we can find a
d2 € (0,1) such that

[x(t,&) —z(s,0)| < & if0<s,t<o0,|t—s| <bs. (2.11)
Combining (2.10) and (2.11), we see that for every n > 1,

lw(z(te, @) — w(z(t, )] < % if ty <t <ty + 6s.
This, together with (2.9), yields

w(z(t,®)) > wlz(ts,)) — lw(z(te, ®)) — w(zt,0))
> e- % = %
Therefore N o tss
/O wz(t,d)dt > kz;: /t w(z(t,o))dt
2 5 <l = 00,
k=1

which contradicts (2.6) since we have already shown that (2.6) holds for all w € {2 and of
course for ©. Hence, (2.8) must be true and the theorem has been proved.
As an application, we give an example to which our LaSalle’s result apply and [3] does

not.
Example Consider a one-dimensional stochastic differential equation
1
dz(t) = E(exp{-—t} — 2)zdt + zdB(t), t>0. (2.12)
Let
V(z,t) =%, w(z)=z% a(t)=exp{-t}, b(t)=0.
Then

LV (z,t) = —2* + exp{—t}z°® = —w(z) + a()V (=, t).

The conditions of Theorem 2.1 hold, and so for any initial value o € R™

lim z(t,z¢) = 0.
t—o0
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