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Abstract

We characterize a range of Stochastic Dominance (SD) relations by
means of finite systems of convex inequalities. For ‘SD optimality’ of de-
gree 1 to 4 and ‘SD efficiency’ of degree 2 to 5, we obtain exact systems
that can be implemented using Linear Programming or Convex Quadratic
Programming. For SD optimality of degree five and higher, and SD effi-
ciency of degree six and higher, we obtain necessary conditions. We use
separate model variables for the values of the derivatives of all relevant
orders at all relevant outcome levels, which allows for preference restric-
tions beyond the standard sign restrictions. Our systems of inequalities
can be interpreted in terms of piecewise polynomial utility functions with
a number of pieces that increases with the number of outcomes and the
degree of SD. An empirical study analyzes the relevance of higher-order
risk preferences for comparing a passive stock market index with actively
managed stock portfolios in standard data sets from the empirical asset
pricing literature.
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1 Introduction

Stochastic Dominance (SD) ranks risky prospects based on general regular-
ity conditions for decision making under risk (JQS62], [HR69]|, [HL69], [RS70],
[Whit70]). Recent applications in OR/MS include [LR12], [MXF12], [RMZ13],
[PK13], [DK14], [HHM14], [Pod14], [AD15], [EFR16], [Longl6], [MSTW16],
[PP16] and [PK16].

The classical applications of SD compare a given prospect with a single al-
ternative. More challenging applications involve multiple alternatives. In these
cases, the concepts of ‘SD optimality’ ([Fish74], [BBRS85]) and ‘SD efficiency’
([Post03], [DRO3], [Kuos04], [PV07], [KP09], [ST10], [Liz12a], [Liz12b], [Post16],
[Longl16]) apply. In these multivariate applications, a closed-form solution gen-
erally does not exist and numerical optimization is required.

Most studies focus on the first three degrees of SD (N = 1,2, 3): first-degree
SD (FSD), second-degree SD (SSD) and third-degree SD (TSD). In an ambitious
attempt to generalize existing results, [PK13] develop systems of linear inequal-
ities for general Nth degree SD (NSD; N > 1). With this general formulation,
a large class of SD relations can be analyzed using Linear Programming (LP).
The relevant LP problems are relatively small and convenient for large-scale
applications, simulations and statistical resampling methods.

Despite its merits, the [PK13] approach is not exact but an approximation
for SD optimality tests of degree N > 3 and SD efficiency tests of degree N > 4.
Our study proposes a general revision of [PK13], aiming at stronger operational
conditions for higher-degree SD relations. The revision applies to a range of
SD relations; we revise even the simple case of pairwise TSD, which arises as a
special case of SD optimality with two prospects and N = 3.

Our strongest results are obtained for SD optimality of degree N =1,2,3,4
and SD efficiency of degree N = 2,3,4,5. For these SD relations, we find finite
and exact systems of convex inequalities that can be implemented using LP or
Convex Quadratic Programming (CQP). By comparison, the linear systems of
[PK13] are exact only for optimality of degree N = 1,2 and efficiency of degree
N =23.

For optimality of degree N > 5 and efficiency of degree N > 6, our con-
ditions are necessary but not sufficient. We do not consider this an important
limitation. The arguments for restricting higher-order derivatives are less com-
pelling than for lower-order derivatives. In addition, these restrictions generally
have minimal effects on the flexibility to model the relevant utility levels (for



optimality tests) or marginal utility levels (for efficiency tests).

Our analysis introduces model variables for the values of all (N — 1) relevant
derivatives at all 7" relevant outcome levels. The additional model variables
are not only needed for higher-degree SD relations but can also be used to
impose restrictions on the values of the derivatives in addition to the standard
restrictions on the signs. This feature is relevant for tests based on Decreasing
Absolute Risk Aversion (DARA) SD ([Vick75]), Stochastic Dominance With
respect to a Function (SDWRF; [Mey77]), Almost Stochastic Dominance (ASD;
[LLO02], [LR12], [THS13|) and Standard Stochastic Dominance’ (StSD; [Post16]).

One way to interpret our revision is that we use piecewise polynomial func-
tions with a number of pieces that increases with the number of outcomes (7°)
and the relevant degree of SD (N). This characterization generalizes results by
[HS88] and [RS89] on representative utility functions for pairwise comparison
based on lower-degree SD rules. Similarly, [CP96, Section 4| derive represen-
tative functions of infinite-degree SD, [KP(09] and [Post03] deal with the repre-
sentation of FSD and SSD efficiency and [PFK15, Section 3] with DARA SD
optimality and efficiency.

We focus on SD optimality and efficiency tests for a given prospect. The
problem of constructing a portfolio which stochastically dominates a given bench-
mark portfolio ([SY94], [DR03|, [Kuos04], [RDMO06]) is beyond the scope of this
study. However, there exists a close link between these two topics. Notably,
[KP15], [AD15] and [Long16] construct SSD efficient portfolios by searching si-
multaneously over portfolio weights and utility functions using LP. Our results
could be used to extend their results to TSD, fourth-degree SD (FOSD) and
fifth-order SD (FISD) using CQP.

In an empirical study, we apply a range of portfolio efficiency tests to com-
pare a passive stock market index with actively managed stock portfolios, in
standard data sets from the empirical asset pricing literature. Our results show
that the estimated pricing errors based on higher-order SD, as well as mod-
ifications of SSD based on SDWRF and ASSD, tend to be larger and more
significant than standard mean-variance (MV) estimates, as a result of using
pricing kernels that exclude arbitrage opportunities and account for systematic
skewness. These findings add to the mounting evidence against market portfolio
efficiency.

Appendix A presents formal proofs for our lemmas and propositions; Ap-
pendix B specifies the LP and CQP problems that we use for our numerical

example in Section 7 and empirical application in Section 9.



2 Preliminaries

We use the general framework of [PK13]. Their analysis considers M > 2
prospects with risky outcomes z1,...,xp€ D := [A, B], —00 < A < B < +o0.
The outcomes are treated as random variables with a discrete joint probability
distribution characterized by R mutually exclusive and exhaustive scenarios
with probabilities p, >0, r=1,--- | R.

We use z; ,» for the outcome of prospect ¢ in scenario r. We collect all possible
outcomes in the joint support ¥ :={y:y=a;,t=1,...,M;r =1,..., R}, rank
these values in ascending order, y; < --- < yg, and use pj; := Plz; = y5] =
Zleprll(xi,r =ys),t=1,...,.M;s=1,..,5S.

Decision makers’ preferences are described by von Neumann—-Morgenstern
utility functions. To implement SD of degree N > 1, we consider the following

set of monotonic utility functions:

Uy = {uec: (-1)""'u"(z) >0, n=0,--- ,N}, (1)

where u°(x) = u(z) and u"(z) := 9"u/dx", n=1,--- , N.

The economic interpretation of the restrictions on the first two derivatives is
well-established: u'(z) > 0 amounts to non-satiation and u?(z) < 0 means risk
aversion. The higher-order derivatives govern the higher-order risk preferences.
Notably, u3(x) > 0 means ‘prudence’, or skewness preference, and u*(z) < 0
equals ‘temperance’, or kurtosis aversion. For discussions of the behavioral
characterization and consequences of higher-order risk preferences, we refer to
[ES06] and [EFR16] and references therein.

The utility set Uy has two redundant but convenient features. First, the
restriction u(z) < 0 is redundant, because utility analysis is location invariant.
This restriction is however convenient because it implies —u!(x) € Uy _1, which
is a useful property in Section 6. Since the below definitions do not require the
values of ™ (z), the requirement that the Nth derivative is continuous is also

redundant and Uy is equivalent to

Uy = {uec 1 (-1)" (W"(y) —u"(z)) >0, n=0,- ,N—Ly>a}.

The use of Uy is however convenient to derive Lemma 1 without using sub-



differential calculus. However, in Lemma 2 and Section 7, we use U}, to allow

for jumps in the Nth derivative.

Definition 1 (Stochastic Dominance). An evaluated prospect z;, i =
1,---,M, is dominated by alternative x;, 7 = 1,---,M, in terms of NSD,
N > 1, if the former is strictly preferred to the latter for all permissible utility

functions u € Uy:

R R
j{:pru(xﬁr)<:§£:pTu(x$T)
r=1 r=1

s
& ulys) (- p),) <0 (2)
s=1
Various applications of SD consider a discrete choice set, Xy := {1, -,z },

M > 2. This specification is relevant in welfare economics, where SD is widely
applied following [Atkin70], because it is not possible to mix welfare distribu-
tions from different countries or periods. Similarly, in health economics, medical

treatments are often indivisible and mutually exclusive.

Definition 2 (SD admissibility). An evaluated prospect ;,i = 1,--+, M,
is admissible in terms of NSD, N > 1, if it is not dominated by any alternative

combination x € Xj, in terms of NSD.

Algorithms for implementing this concept in an efficient manner were de-
veloped in [PWF73] and [BLR79]. The admissibility concept however became
obsolete after [BBRS85] developed LP programs to implement a more powerful
concept by [Fish74]:

Definition 2’ (SD optimality). An evaluated prospect z;, i =1,--- , M,
is optimal in terms of NSD, N > 1, if it is preferred to every alternative x € X}

for some permissible utility function u € Uy:

R
ZE:PTU($@T)Ei§£:PrU($r)Vﬁfe Ab
r=1 r=1
S
ey u(ys) (Pie—pis) =0,j=1,-- M (3)
s=1



For M = 2, the two definitions are equivalent. However, for M > 2, Defini-
tion 2 is a necessary but not sufficient condition for Definition 2’. Put differently,
a prospect can be non-optimal for all permissible utility functions without being
dominated by any individual alternative.

In portfolio choice problems, the feasible set generally consists of all convex
combinations of the prospects, X} := Conv(Xp). We evaluate a given combina-
tion of prospects, x* € X;. Without loss of generality, we rank the scenarios in
ascending order by the outcomes of the evaluated combination: z] < --- < x%.

Distinction is drawn between three closely related definitions of ‘SD effi-
ciency’ which apply in this case. [Liz12b] and [KP15] provide further discussion
of SD efficiency concepts.

Definition 3 (SD efficiency). An evaluated combination z* € X is
efficient in terms of NSD, N > 1, if it is preferred to every alternative z € X}

for some permissible utility function v € Uy:

R R
Zpru (@ir) > Zpru (@) Vo € X.
r=1 r=1

To implement this definition, [PK13] use the following equivalent definition,
for N > 2:

Definition 3’ (SD efficiency). An evaluated combination z* € X; is
efficient in terms of NSD, N > 2, if it obeys the Karush—Kuhn—Tucker first-

order optimality conditions for some permissible utility function v € Uy:

R
3 peul (@) (ah — 250) 20, j=1,--- M. (4)
r=1

This formulation was first introduced by [Post03] for SSD efficiency (N = 2)
and extended by [PVO07, Section IV] to TSD efficiency (N = 3). The formu-
lation applies also for higher-degree efficiency criteria (N > 4). However, it
would give a necessary but not sufficient condition for FSD efficiency (N = 1).
[KP09] present an alternative formulation for FSD efficiency based on piece-wise
constant utility functions which is equivalent to Definition 1 for N = 1.

The portfolio choice literature ([SY94], [DR03], [Kuos04], [RDMO06], [AD15],
[KP15], [Longl6], [PK16]), generally uses a third definition of efficiency:



Definition 3” (SD efficiency). An evaluated combination z* € &) is
efficient in terms of NSD, N > 1, if it is not dominated by any alternative
combination x € X7, in terms of NSD.

For FSD efficiency (N = 1), Definition 3 is a sufficient but not necessary
condition for Definition 37, as shown in [KP09|. Since both FSD efficiency
definitions are already covered in detail in [Kuos04] and [KP09], our analysis
focuses on NSD efficiency for N > 2. For this case, the above three efficiency
definitions are equivalent, due to the saddle point property in the joint analysis
of portfolio weights and risk preferences (see [Post03]|, Thm 1).

Consistent with the above equivalence relations, several existing portfolio op-
timization methods based on SSD (N = 2) search simultaneously over portfolio
weights and utility functions ([KP15], [AD15], [Long16]). The future develop-
ment of portfolio optimization methods based on NSD, N > 3, may benefit
from the characterization of SD efficiency using piecewise polynomial functions

in Section 6 below.

3 Local analysis

This section analyses utility functions and their derivatives on a given subin-
terval [a,b] € D. The local analysis is relevant for the subintervals [ys, ys+1],
s=1,---,8—1, in Definition 2’ and [z, 2,41], r =1,--- , R — 1, in Definition
3’. The next section analyses the global behavior on the entire outcomes domain
D.

For any given v € Uy, N > 1, consider the following decomposition of the

nth derivative, n =0,--- ;N — 1, based on Taylor expansions:
N-1
u?(b)(x — b)1 ™
u"(x) = ————— + Ruyn(z:b); 5
@ =X = (w:0) 5)
1 b Nen-1

The nth order derivative u(™ (z) consists of a Taylor polynomial and a re-
mainder term R, (x;b). The analytic challenge in this section is to characterize
the relation between R, (a;b) and R.m (a;b) for different orders (n # m).

Let Vu(z) := (u’(z)---uN"'(x)). We introduce model variables o :=



(g -an—1) and B := (Bo---Bn-1) to capture Vu(a) and Vu(b) for per-
missible utility functions. Consider the following linear combinations of the

model variables:

N-1 g—n
pn (e, B) :=W (an— Z%),n=0,~- N —1. (7)

Importantly, p, (a, 3) is constructed to capture a normalization of the nth

remainder term. Specifically, combining (5) and (7) yields

(N—-n-1)

pn (Vu(a), Vu(b)) = a— b

Run(a;b), n=0,--- ,N — 1. (8)

To capture the relation between the remainder terms of different orders, we

will use the nth forward difference as defined through the binomial transform:
n n
O'n(avﬁ) :Z(_l)k< L )pk(a7la)anzo7"'7N_1' (9)
k=0

The transform is self-inverse, so that the original levels can be regained from

the differences in the following way:

pn (@, B) = Z(_l)k < Z > ox(a,B), n=0,--- N —1. (10)
e

0

Consider the following joint restrictions for the model variables o and 3:



(_1)n+1ﬁn20, n=0,---,N—1; (11)

(-1)N""15, (a,8) >0, n=0,--- ,N —1; (12)
n+2m m
(_1)N—n—1 Z < q—n ) ! "oq (o, B) 2 0,
q=n
m—1,~~~,V\T2_1J;n—O,~~,(N2m1);Vg020. (13)

For N = 1,2, inequalities (13) do not apply, as [ 25| = 0. In fact, (12) can
be seen as the extension of (13) to m = 0. For N = 3,4, we need to consider
m = 1. For N = 5,6, we need to consider also m = 2, and so forth for higher
degrees (N > 7).

The above restrictions characterize the levels and derivatives of all permis-

sible utility functions:

Lemma 1 (Local necessary conditions). For any given ue Uy, N > 1,
we find that Vu(a) and Vu(b) obey (11), (12) and (13).

Lemma 2 (Local sufficient conditions). If @ = (ap---an_1) and 8 =
(Bo---Bn-1) obey (11), (12) and (13) for N = 1,--- ,4, then there exists u €
Uy: Vu(a) = a and Vu(b) = 6.

The proof of Lemma 2 in the Appendix is formulated in terms of functions
u € U} that consist of (N — 1) polynomial pieces of degree (N —1). An
alternative proof (based on Uy rather than U}) appears as the proof of the
sufficient condition of Theorem 1 in [Fangl4].

Despite the complicated structure of the coefficients, constraints (12) and
(13) are linear in the model variables a and 3. The constraints in (13), which
apply for N > 3, are however of infinite dimension due to the requirement
Yo >0.

For general N > 3, we can derive an approximate linear discretization by

restricting the parameter ¢ to the unit interval:

Lemma 3 (Bounded parameter space). The conditions (13) are equiv-

alent to



n+2m

CILREDY ( qu”n )w"‘"aq (@, 8) = 0; (14)

q—n

n+2m m
(~pNet 3 ( )w-qaq (. B8) > 0, (15)

N -1
m:1,~--,{2J;n:0,--~,(N—2m—1);V<p€[0,l].

(Without proof)

It is straightforward to develop a suitable discretization for the unit interval.

Furthermore, for N = 3,4 (m = 1), an exact quadratic discretization exists:

Lemma 4 (Quadratic constraints). For N = 3,4, the inequalities (13)

are equivalent to

Un+1(a7ﬂ)2 - o_n(aa/@)o—n+2(a>/6) < Oa n==u--- 7N -3 (16)

These quadratic constraints (16) are convex in the parameter space defined
by inequalities (11), which require an alternating sign for the forward differences
on(a,B8),n=0,---,N—1. Hence, the finite quadratic system {(11), (12), (16)}

is convex.

4 Global analysis

To implement SD optimality and SD efficiency, we will now consider the case

with T outcomes z;, t = 1,--- T, z; < -+ < zp. The outcomes partition the
interval [z1, zr| into sub-intervals [at, b:] = [2t, ze41], t = 1,--- , T — 1, where
Qt+1 = by :Zt+17t: I,--- 7T_1

Proposition 1 (Global necessary conditions). For any utility func-
tion w € Uy, N > 1, and outcomes z; < -+ < zp, (Vu(z), Vu(zir1)),
t=1,---,T —1, obey inequalities (11), (12) and (13).

10



For every sub-interval, we use parameter vectors to capture Vu(a;) and

Vu(b;). Since the sub-intervals are connected, or ai11 = by = 2441, t =
1,---,T =1, we find Vu(a;) = Vu(bi—1), t = 2,---,T — 1. We therefore
only need a single set of parameters oy, t = 1,---,T, where oy = Vu(ay)

t=1,---,T—1, and ar = Vu(br_1).

Proposition 2 (Global sufficient conditions). For given outcomes z; <
.-+ < zp and degree N = 1,2, 3, 4, if a given set of parameters c;; = (ou0- - @, n—-1),
t =1,---,T, satisfy the inequalities (11), (12) and (13) for every (o, out1),
t=1,---,T —1, then there exists u € Ux: Vu(z) =, ;t=1,---,T.

Using (N — 1) polynomial pieces for every subinterval, we find that U3 can
be represented by (N — 1)(T — 1) polynomial pieces of degree (N — 1).

5 SD Optimality conditions

The inequalities (11), (12) and (13) are linear in the parameters o and 3.
Hence, the inequalities (2) are also linear in these parameters. We use T' = S
and z; = ys. Applying Proposition 1 and Proposition 2 to the SD optimality

conditions (2), we find a linear system for SD optimality:

Theorem 1 (SD optimality). An evaluated prospect x;, it =1,--- , M, is
optimal in terms of NSD, N > 1, only if there exists a non-zero solution for the

following system of inequalities:

S
Zao,s (P;s _p;,s) 2 0; ] = ]-, e aM; (17)
s=1

(_1)71-"-10[”’520, ’I’L:O77N_]_’s:17’5’

(—1)N_"_1an(as,a5+1) >0, n=0,---,N—-1;s=1,---,5—1;

n+2m

2
(Cayynt 'S ( m )go (o 0rasn) 20
q=n a-n

N-1
m:1,~-,{2J;nzO,---,(N—2m—1);s:1,-~-,S—l;V<p>0.

11



For N = 1,2, 3,4, these inequalities are also sufficient conditions.
(Without proof)

We must exclude zero solutions, or o, s = 0 foralln =1,---,N —1 and
s =1,---,85, to avoid the trivial utility function u(z) = ¢, V& € D, or an
indifferent decision maker.

For N = 1,2, the system consists of a finite number of linear inequalities.
For N > 3, we can obtain an approximate linear discretization using Lemma 3
and a discretization of the unit interval for the parameter .

We can specify optimization problems to test the linear systems. Details
such as the orientation of the objective function and the normalization of the
variables depend on the application at hand. Appendix B discusses the CQP
problem for the optimality test that we use in the numerical example in Section
7 below.

In addition, for N = 3,4, we may use Lemma 4 to find a finite number of
quadratic inequalities for TSD and FOSD optimality. These inequalities can be
tested using CQP.

6 SD efficiency conditions

In a similar way, we can derive linear or quadratic systems for SD efficiency.
We could apply Proposition 1 and Proposition 2 directly to the utility function
u(z) in Definition 3’. However, this approach would introduce redundancies, as
the efficiency conditions (3) do not require the utility levels u(a) and u(b).

A more computationally efficient approach applies our results to the negative
of the marginal utility function, n(z) := —u'(z). Since n(z) € Uy_1, this
approach allows us implement Nth degree SD efficiency in the same way as
(N — 1)th degree SD optimality.

To remove the utility levels from the analysis, we modify the definition of

the forward differences as follows:

(o, B) =) (-1)* < " >pk (a,8),n=1,--- ,N—1. (18)

Furthermore, we use T'= R and z; = x,.

We can now present the analogue of Theorem 1 for SD efficiency:

12



Theorem 2 (SD efficiency). An evaluated combination z* € X} is efficient
in terms of NSD, N > 2, only if there exists a non-zero solution for the following

system of inequalities:

R
Zpral,r (e —xj,)>0,j=1,---,M; (19)
r=1

(_1)n+1an,r20, ’I'L:l, ,N—l;r:l’... 7R;
(71)N7“gn(ar,ar+1)20, TL:].,~~~ 7]\7—]_;1':]_’... 7Ri]_;

Nen n+2m om vn
(71) E ® Sq (am ar+1) >0,
q—n+1

qg=n
N -2

m=1,---, {2J n=1,-,(N=2m—1);r=1,--- ,R—1;Yp > 0.

For N = 2,3,4,5, these inequalities are also sufficient conditions.

(Without proof)

For SSD and TSD (N = 2, 3), the system is finite and linear. For N > 4, we
may obtain a linear approximate discretization along the lines of Lemma 3 or,
for N = 4,5, a convex quadratic exact discretization along the lines of Lemma
4.

7 Illustration (N = 3)

This section illustrates our analysis for the important case of N = 3. Figure
1 shows bounds on Vu(z), u € Us, obtained for particular values of the model
variables a and 3. Let [a,b] = [0.8,1.2] and k(x) = — exp(—4z).

Without specifying a, the only restrictions on 3 are the alternating signs.
In our example, we set 3 = Vk(1.2). For as and 35 to represent the curvature
u?(a) and u?(b), u € Us, we must have that ay < 5. Fixing the values for a,,
n = 2,1,0, introduces additional restrictions. Suppose that we select a feasible
value for as, say as = k?(a) = —16exp(—3.2). For a; and f3; to represent the
slope u!(a) and u!(b) of some u € U, the mean-value theorem implies

(6751 S 61 + CVQ(G, — b), (20)
ay > 1+ Pa(a —b). (21)

13



Next, we select a specific feasible value for ay, say oy = k'(a) = 4exp(—3.2).
This choice further narrows the range of relevant functions. The remaining
functions can be characterized by a lower envelope g(x) and an upper envelope
h(x), which are formally defined in (37) and (39) in the Appendix. These two
extreme functions and their derivatives are shown in Figure 1 as the dashed lines
(lower envelope) and the dotted lines (upper envelope). In our specific example,
v~ —0.33 and 6 =~ 0.95.

For ag and Sy to represent the levels u(a) and u(b), u € Us, we must have

aozg(a):50+61(a7b)+%(041751)(a7b); (22)

(a2 = B2)(a — 0)*. (23)

DO =

00 < h(a) = fo + r(a — b) + 5fala— B2 +

It is easy to verify that inequalities (20), (21) and (22) amount to the three
conditions in (12) and the inequality (23) amounts to (16) for N = 3.

The above analysis illustrates the necessary condition (Lemma 1). We can
also use the example to illustrate sufficiency (Lemma 2). Suppose that we
select a feasible value for «g, say oy = k(a) = —exp(—3.2). We can find
u € U;: (Vu(a), Vu(b)) = (e, 8), by taking the mixture f(z) = wg(z) + (1 —
w)h(z), w € [0, 1], that gives f(a) = ag. By construction, the mixed function
is permissible (f € U5 ) and Vf(a) = a and Vf(b) = B3). In Figure 1, the
resulting function and its derivatives are shown as the solid lines in the three
panels.

Figure 2 continues the example to illustrate that local monotonicity ensures
global monotonicity (Proposition 2). The graph combines the local results for
three subintervals: [a1,b1] = [0.4,0.8], [a2, b2] = [0.8,1.2] and [as, b3] = [1.2, 1.6].
In this case, the combined function consist of (N —1)(T'—1) = 6 quadratic pieces.

By contrast, the [PK13] approach would consider only utility functions with
(T — 1) = 3 quadratic pieces, which can lead to false rejections of optimality
or efficiency. To illustrate the distinction between the two approaches, consider
the following example with two prospects (M = 2) and four possible outcomes
(T =4):

14
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04 032 0.34
0.8 0.19 0.12
1.2 0.31 0.42
1.6 0.18 0.12

I T

In this case, 1 does not dominate zo by TSD, as may be verified using a
simple pairwise TSD test. Given that non-dominance is equivalent to optimal-
ity for M = 2, we conclude that x5 is TSD optimal. We may illustrate the
distinction between the [PK13] approach and our approach by testing whether
2o is TSD optimal using both approaches.

The [PK13] approach falsely classifies 25 as non-optimal, because x; achieves
a higher expected utility than x5 for all three-piece quadratic functions with
kinks at the subinterval boundary points z = 0.8,1.2. The optimal solution to
the relevant LP problem ([PK13], Eq. 15) is given by

(1(0.4),%(0.8), u(1.2), u(1.6)) = (—1.08, —0.48, —0.12,0.00); (24)
(u(0.4),u(0.8),u*(1.2),u*(1.6)) = (1.80,1.20,0.60,0.00). (25)

This solution corresponds to the following one-piece quadratic utility func-

tion:

w(z) = —1.905 + 2.3812 — 0.744a>. (26)

Even for this ‘most favorable’ function, x; achieves a higher expected utility
than z. Unfortunately, the [PK13] approach does not consider the possibility
that the utility function kinks in the interior of the subintervals.

We may implement our approach using the CQP problem that is described
in Appendix B. The optimal value of the objective function is zero, which means
that xs is classified as TSD optimal. The optimal solution is not unique. An
example of an optimal solution is given by

15



(u(0.4),u(0.8),u(1.2),u(1.6)) = (—1.01, —0.36, —0.04, 0.00); (27)
(u(0.4),u*(0.8),u*(1.2),u"(1.6)) = (2.02,1.21,0.40,0.00). (28)

This solution corresponds to the following two-piece quadratic utility func-

tion with a kink at the interior point x = 1.4:

~1.01(14—2)> z<14
u(z) = . (29)
0 z>14

For this function, xo achieves a higher expected utility than x;y. Thus, our

approach correctly classifies o as TSD optimal, based on a permissible function
which is ignored by the [PK13] approach.
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8 Discussion

Our analysis allows us to further analyze the approximation by [PK13].

Their Theorem 1 implicitly assumes that R, ,(z;b) = ¢ p)N-—n-1

b

1
[ETeyiCh
n =0,---, N — 2. By the Lagrange form of the remainder term, this repre-

sentation is correct for a given n if we set ¢ = u’N"1(¢,), where &, € [a,b)].
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Unfortunately, the points &,, n =0,--- , N — 2, are generally not identical un-
less the utility function consists of one (N — 1)th degree polynomial piece on
the relevant subinterval [a, b].

The approximation is perfect for FSD and SSD optimality tests and SSD
and TSD efficiency tests. These tests can be formulated in terms of piece-
wise constant or piece-wise linear utility functions or marginal utility functions.
However, approximation error can arise for SD optimality tests of degree N > 3
and SD efficiency tests of degree N > 4.

The approximation error disappears as (b — a) — 0. Therefore, the flaw
has no material consequences if the outcomes z;, t = 1,--- , T, represent a fine
partition of the outcomes domain. The application of [PK13] uses large financial
data sets with a dense empirical distribution. In this situation, our revision has
no material effect. Nevertheless, our revision can lead to improvements for
higher-degree tests if the partition of the outcomes domain is more coarse, for
example, in behavioral choice experiments.

Our revision introduces model variables for the values of all relevant deriva-
tives at all relevant outcome levels. Despite the additional variables and con-
straints, the problem dimensions of (17) and (19) remain linear in the number
of scenarios. The problems remain relatively small for typical applications, even
for a fine discretization of the unit interval for the parameter ¢. Also a CQP for-
mulation based on Lemma 4 is inexpensive with modern-day computer hardware
and solver software.

Our strongest results are obtained for SD optimality based on N =1,2,3,4
and SD efficiency based on N = 2,3,4,5. For SD optimality and efficiency
of higher degrees, we produce only necessary conditions. We did not pursue
stronger results, because degree N > 5 seems to have limited practical use.
Restrictions on the signs of the higher-order derivatives generally have minimal
effects on the flexibility to model the utility levels (in Definition 2’) and marginal
utility levels (in Definition 3’).

By contrast, restrictions on the Pratt-Arrow coefficient of absolute risk aver-
sion (DARA SD and SDWRF), level of the lower-order derivatives (ASD) and
Kimball’s coefficient of absolute prudence (StSD) tend to be more powerful
than restrictions on the signs of the higher-order derivatives ([BP97], [PK13],
[PFK15], [PP16]). Our results for N = 1,2, 3,4 are relevant in this context, as
DARA SD and StSD maintain the standard TSD and FOSD restrictions and,
in addition, all these relations (DARA SD, SDWRF, ASD, StSD) require the

values of the derivatives of various orders.
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Our approach also allows us to implement the [MSTW16] SD rule, which
falls between FSD and SSD. Using 0 < C' < 1 for an anti-index of greediness,
[MSTW16] introduce the following notion of generalized concavity:

ut(z1) > Cut(z9) >0, Va1, 29 : 21 < 29 (30)

In the special case of C' = 0, this condition amounts to non-satiation (FSD);
for C = 1, we obtain risk aversion (SSD). The case with 0 < C < 1 falls in
between of these two special cases.

We know that

u(rs) — u(xgyq
oo(ots, 0tgy1) = M — ul(z)’ (31)
Ts — xs+1
for some z € [x4,x5y1]. It is therefore possible to extend our linear system

for FSD optimality ((17); N = 1) to the following system for the new SD rule:

S
Zao,s (p;:s _p;,s) Z 0) .7 = 17' o an (32)
s=1
aO,sSOa 8217"' aS7
Qa1 .s Z CO—O(asaas-&-l) Z 07 s = 17‘ o 5S - 17
oo(as, 1) > Cags41 >0, s=1,---,9—1.

Our analysis of SD efficiency can however not be extended in this way, be-
cause Definition 3’ is based on the Karush—-Kuhn—Tucker conditions, which gen-

erally are not sufficient if we allow for risk seeking.

9 Empirical application

We can use our linear system (19) to analyze market portfolio efficiency
along the lines of [PK13]. We compare the CRSP all-share index with actively
managed stock portfolios that are formed, and periodically rebalanced, based on
publicly available stock-level information. The analysis also includes a riskless
asset with return equal to the time-series average of the T-bill yield in the
relevant sample period.

We consider six different sets of portfolios from the data library of Kenneth
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French: (i) ten portfolios formed on market capitalization of equity (ME); (ii) 30
portfolios formed on four-digit Standard Industrial Classification (SIC) codes;
(iii) 25 portfolios formed on ME and book-to-market equity ratio (BM); (iv)
25 portfolios formed on ME and the return in the past month (R1-1); (v) 25
portfolios formed on ME and the return in the eleven months before the past
month (R2-12); (vi) 25 portfolios formed on ME and the return in the four years
before the past year (R13-60).

We analyze gross value-weighted portfolio returns for holding periods of one
month (H = 1), one quarter (H = 3) and one year (H = 12) from the first
available observation, depending on the data set, in the late 1920s or early
1930s, to the end of 2015.

We design optimization problems for system (19) for NSD efficiency by de-
gree N = 2,3,4,5. Appendix B specifies the relevant LP and CQP problems.
In addition to the NSD efficiency tests, we apply efficiency tests based on DSD,
SDWRF, ASSD and StSD, using additional model variables and constraints
from the existing literature. We also apply a mean-variance (MV) efficiency
test based on a linear and decreasing marginal utility function.

The time-series observations are interpreted as scenarios with equal probabil-
ities (p, = R™!). In this application, u' (x*), r = 1,--- , R, can be interpreted
as a stochastic discount factor (SDF) that equals the marginal utility of wealth
for a representative investor. All tests are normalized such that the sample
mean of the SDF equals unity: R~ 2% | w! (2F) = 1.

Since all base assets have a strictly positive weight in the index, the first-
order optimality condition (3) must hold with equality and the violations ¢; :=
Zf‘:l prut (zF) (xj, —x}), j = 1,--- , M, can be interpreted as pricing errors.
The objective of our optimization problem is to minimize (across all permissible
utility functions) the maximum (across the base assets) of the pricing errors.
We prefer this mini-max criterion because it allows for a straightforward eco-
nomic interpretation of the objective as the largest abnormal return that can
be achieved without leverage or short selling.

For statistical inference, we use a bootstrap procedure that repeatedly ap-
plies the efficiency test to random pseudo-samples. Under the assumption of
identical and independently distributed (i.i.d.) time-series returns, the empiri-
cal return distribution is a consistent estimator of the population distribution,
and bootstrap samples can simply be obtained by randomly sampling with re-
placement from the empirical distribution.

In order to obtain consistent p-values, it is important to re-center the boot-
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strap process so that it obeys the null hypothesis ([HH96]). Our null hypoth-

esis is portfolio efficiency and the empirical violations of this null hypothesis

are the estimated pricing errors ¢; := R™! Zle arp(zj,—ai)r=1,--- | R;
j=1,--- M. We can therefore re-center the bootstrap process by subtract-
ing the estimated pricing errors from every observation: Z;, = x;, — &;,

r=1,--- Ry j=1,--- , M.

We implement the bootstrap by generating pseudo-samples of the same size
as the original sample through random draws with replacement from the re-
centered version of the original sample, and test efficiency in every pseudo-
sample. Finally, we compute critical values for the original test statistic from
the percentiles of the bootstrap distribution.

In a specialized study of bootstrap inference on SD efficiency, [ST2010] rec-
ommend 300 pseudo-samples as a reasonable compromise between accuracy,
time and computer constraints for a similar application. To be on the safe side,
we used 10,000 pseudo-samples, at the cost of additional computer time.

Table I summarizes the estimation results. Perhaps surprisingly, we cannot
reject MV efficiency of the market portfolio in most of the data sets. The
relatively large differences in average return imply a high estimated market risk
premium. The MV SDF therefore takes negative values for the largest market
upswings, which violates the no-arbitrage principle (a problem discussed by
[DI82]) and lowers the estimated pricing errors of high-beta investment portfolio.
The MV SDF also does not penalize the negative skewness of the market index.

The SSD efficiency test yields even smaller pricing errors in most data sets.
The median test statistic falls by 67 basis points (bps) compared with the MV
test. However, the SSD SDF is a far cry from a well-behaved marginal utility
function. The SDF tends to show large discontinuous jumps and concave seg-
ments. This pattern is not consistent with decreasing risk aversion and casts
doubt on the economic meaning of the SSD results.

The TSD criterion (N = 3) imposes prudence (skewness preference) and
avoids non-convexity of the SDF. The median test statistic increases by 99 bps
compared with SSD. The TSD criterion also tends to be stronger than the MV
criterion because it excludes arbitrage opportunities and accounts for systematic
skewness.

The incremental effect of restricting the higher-order derivatives diminishes.
The FOSD criterion (N = 4) assumes temperance (kurtosis aversion) and in-
creases the median test statistic by 14 bps. The incremental effect of imposing
edginess (FISD; N = 5 ) is limited to just a few bps. The test results for NSD
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of even higher degree (N > 6) are not distinguishable from the FISD results.

Although the higher-degree SDFs (N > 3) are convex, they exhibit large
linear segments or local risk neutrality. The DSD criterion imposes DARA (or
log-convexity of the SDF). This assumption has more discriminating power than
sign restrictions for the higher-order derivatives, witness an 71 bps increase of
the median test statistic compared with TSD. StSD imposes DAP in addition
to DARA. The incremental effect of this assumption is just a few bps in the
median sample.

SDWRF and ASSD lead to large increases in the test statistic compared with
SSD but the results are incomparable with TSD and DSD; the ranking of these
decision rules depends on the specific data set. This is not entirely surprising,
because restricting the level of risk aversion or ARA differs fundamentally from
restricting the direction of risk aversion or ARA.

As a robustness test, we repeated our analysis after excluding the first size
quintile (in the five data sets that sort stocks on ME) and the early sub-period
before 1963, common robustness tests in the empirical asset pricing literature.
The full-sample results and conclusions are robust to these exclusions. The
median value of the test statistic decreases by tens of bps, but the effect of
restricting higher-order risk aversion is comparable with that in the full sample.

A robust conclusion seems that SSD is too weak for meaningful investment
analysis. By contrast, higher-order SD rules, as well as modifications of SSD
based on SDWRF and ASSD, seem useful as a complement to MV analysis. In
particular restrictions on the level or direction of risk aversion and the ARA
coefficient are effective to increase the discriminating power of the analysis.
It adds to the mounting evidence against market portfolio efficiency that the
estimated pricing errors based on higher-order SD rules are even larger and more
significant than standard MV estimates.
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Appendix A: Formal proofs

Proof of Lemma 1. (11) follows directly from the definition of Uy in (1).
Proving (12) and (13) involves some calculus. Using (9), (8) and (6),

o (Vu(a), V(b)) = 3 (-1 ( . >pk (Vu(a), Vu(b))

I ( i ) (Gt Ruatain)
k=0

n b__ N N-k-1
n W U (t)(a—1t) dt
=2 ( k ) (f (a—b)N-F )

k=0
2 —uN () (a — )N YR (— 1) ( Z ) (a—1)""*(a—b)*dt
B (a—b)N
PN )N N a—t —a+ b)ndt
a (a—b)N
b a— N—n—1 _\n
- / 7uN(t)( t)(a — b)](vb 2 dt. (33)

Condition (12) now follows from

a — t)N*’nfl

N _ N-n-1
Entering (33) in the constraint (13), and rearranging terms, yields

n+2m

() S ( i”n )soq—”aq (Vu(a), Vu(b) =

q=n

n+2m m b a— N—n—1 _\n
(_1)(N—n—1) Z < q2_n )()Oq—n (/ —UN<t)( t)(a b)]s[b t) dt) _

b a— N—n—1-2m _ AN a— n _ 2m
o [ et Gty o)

(35)
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The RHS is non-negative, because

a— N—n—1-2m
sgn <uN(t)( (12 N > = (1)W1 g (36)

Proof of Lemma 2. We will prove the lemma using piecewise polynomial
functions u € Uy,. For N = 1,2, the results are straightforward based on the
piecewise constant and piecewise linear functions of [KP09] and [Post03].

For N = 3, consider the following two piecewise quadratic functions:

9(z) = fo + B = )+ 30z~ b (37)
(=B
7"<a_b)’ (38)
ha) e 4 0T AE =D H3Ba(a =B p(e0 B (@0 a<h o
Bo + Bi(x = b) + 5P2(x — b)? x>0
o ay — B1 — Ba(a—1D)
0:=a+ o . (40)

Restrictions (12, n = 1) and (16) can be reformulated as follows

ao260+61(a—b)+%(a1—61)(a—b):g(a); (41)

00 < Bo + Bila—b) + ~Ba(a—b)2 + ~(as — Bo)a—0)2 = h(a).  (42)

2

DN | =

Since h(a) > ag > g(a), we can find a mixture f(z) = wg(x) + (1 — w)h(x),
w € [0,1], that gives f(a) = ap. The mixture function is two-piece quadratic
and permissible: g,h € U5 = f € U;. The parameters v and 6 are set
such that ¢g"(z) = h"(z) = u"(z), for z = a,b and n = 1,2. Hence, we find
(VF(a), V£(b) = (. B).

For N = 4, we can apply the same reasoning using two-piece cubic functions,
but the notation becomes more cumbersome. This case can be characterized
in a compact way by the following two-piece step functions for the third-order

derivative:
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az a<xz<b

@P@) =4y 6, <x<b; (43)
By x=0b

1 (ag — Bo — az(a —b))?2

" = a3—§a1_51_O‘?(a_b)ﬁ-%ag(a_b)z; (44)
o= P 3(azt By)(a—b)
91 =a—2 az—ﬁz—ag(a—b) . (45)
a3 T =a

R (2):=47 a<z<f; (46)

B3 O<x<b
L (ag — Ba — B3(a —b))? - .
’Yz-*2a1—51_52(a_b)_%53(a_b)2+53, (47)
by e a o0t 01— Pal0—b) — 5fa(a b} (48)

as — P2 — PB3(a—0)

The parameters 71, v2, 61 and 0 are set such that ¢"(z) = h"(2) = u"™(2),
for z = a,b and n = 1,2,3. Integrating these step functions thrice gives the
two relevant extremes for the utility functions. Mixing the two extremes yields
a three-piece cubic utility function f € U] that takes the correct values for the

levels and derivatives.Ol

Proof of Lemma 4. For N = 3,4, we have that | %1 | = 1, and we need to
consider only m = 1. For m = 1, the inequalities (13) are quadratic expressions

of the parameter o:

0 < (=DN7" (o (a, 8) 9% + 20041 (a0, B) 0 + Tnga (@, B)) =: &nlp),
n=0,--,N—3. (49)

The inequalities hold if and only if the discriminants of the quadratic func-
tions &, (¢) are non-negative, n = 0,--- ,N — 3. The discriminant conditions
are given by (16). O

Proof of Proposition 1. The theorem can be proven by applying Lemma
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1 to every sub-interval (a, b) = (2¢, 2041), t=1,--- , T — 1.0

Proof of Proposition 2. Applying Lemma 2 to every sub-interval (a;, b;) =
(2¢,2t41), t = 1,--- ;T — 1, we can establish the existence of a set of utility
functions ft € Uy with (Vft(Zt),Vft(Zt+1)) = (at,at+1), t=1,---,T —1.
Let

filz)  welan, 2]
u(x) = . (50)

fr—i(z) =€ [zp_1,27]

The function is continuous at the sub-interval end points, or V f,(zi41) =
Vfii1(ze41), t =1,--- ,T—1. Consequently, the local monotonicity properties
of the local functions f;, ¢ = 1,---,T — 1, ensure global monotonicity and,
therefore, u € Uy .

Furthermore, by construction,

Vu(z) = Vfi(z) = o (51)

fort=1,---,7.00

Appendix B: Optimization problems

In Section 7, we test TSD optimality of a given prospect. In this section,
we present the CQP problem that we solved for that test. For the sake of
generality, we specify the program for the general case of M > 2 and 1 <
N < 4. We combine Theorem 1 with Lemma 4 to obtain a finite system of
convex quadratic constraints. To exclude zero solutions, we add the normalizing
constraint Zle pjso1,s = 1, following [PK13]. The objective is to minimize
the largest feasible improvement in expected utility across all prospects, again

following [PK13]. The resulting optimization problem follows:
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min 0 (52)
S
D oo (phy =) +0>0, =1, M;

s=1
(_1)71-"-10“1’520, ’I’L:O’ 7A]\/v—]_;s:]_’... ’S’
(—1)N—n—10n(037as+1)20, ’I’L:O’ ’N—l,Szl, ,5_17

Tpr1(@s, @sp1)? = on(@s, @sy1)onya(s, as1) <0, n=0,--- N = 3;

S

*
E Pi,s@1,s = 1.
s=1

Recall that o, (as, as41) is a linear expression of a and as41; see (7)
and (9). We end up with a CQP problem with model variables 6 and «,, q,
n=0,---,N—1;s=1,---,5. For N = 1,2, the quadratic constraints vanish
and we are left with an LP problem which is equivalent to the corresponding
optimality problem in [PK13]. It follows from Theorem 1, that non-optimality
occurs if and only if 6* > 0.

In Section 9, we test NSD efficiency of a market index (2 < N < 5). We
now discuss the associated optimization problem. We combine Theorem 2 with
Lemma 4 to obtain a finite system of convex quadratic constraints. To exclude
zero solution, we add the normalizing constraint Eil praq,» = 1. The objective
is to minimize the largest error across all prospects. The resulting optimization

problem follows:

R
Zpral,r (x) —xj,)+0>0,5=1,--- M;
r=1

(_1)n+1an,r20, ’l’L:l,---,N—l;r:L...7R;
(71)N7n71§n(a7“7ar+1)20; nzl,,N*l,T:1,7R71,

§n+1(ar7ar+1)2 — Cn(ar7ar+1>§n+2(ar,ar+1) < O, n = 1, c. ’N _ 3;

R
Zpral,r =1
r=1
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We arrive at a CQP problem with model variables § and oy, ., n =1,--- | N—

L,r=1,-

-+, R. For N = 2,3, the quadratic constraints vanish and we find an

LP problem that is equivalent to the corresponding efficiency problem in [PK13].

It follows from Theorem 2, that inefficiency occurs if and only if * > 0.
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