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Abstract

We characterize a range of Stochastic Dominance (SD) relations by

means of �nite systems of convex inequalities. For `SD optimality' of de-

gree 1 to 4 and `SD e�ciency' of degree 2 to 5, we obtain exact systems

that can be implemented using Linear Programming or Convex Quadratic

Programming. For SD optimality of degree �ve and higher, and SD e�-

ciency of degree six and higher, we obtain necessary conditions. We use

separate model variables for the values of the derivatives of all relevant

orders at all relevant outcome levels, which allows for preference restric-

tions beyond the standard sign restrictions. Our systems of inequalities

can be interpreted in terms of piecewise polynomial utility functions with

a number of pieces that increases with the number of outcomes and the

degree of SD. An empirical study analyzes the relevance of higher-order

risk preferences for comparing a passive stock market index with actively

managed stock portfolios in standard data sets from the empirical asset

pricing literature.
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1 Introduction

Stochastic Dominance (SD) ranks risky prospects based on general regular-

ity conditions for decision making under risk ([QS62], [HR69], [HL69], [RS70],

[Whit70]). Recent applications in OR/MS include [LR12], [MXF12], [RMZ13],

[PK13], [DK14], [HHM14], [Pod14], [AD15], [EFR16], [Long16], [MSTW16],

[PP16] and [PK16].

The classical applications of SD compare a given prospect with a single al-

ternative. More challenging applications involve multiple alternatives. In these

cases, the concepts of `SD optimality' ([Fish74], [BBRS85]) and `SD e�ciency'

([Post03], [DR03], [Kuos04], [PV07], [KP09], [ST10], [Liz12a], [Liz12b], [Post16],

[Long16]) apply. In these multivariate applications, a closed-form solution gen-

erally does not exist and numerical optimization is required.

Most studies focus on the �rst three degrees of SD (N = 1, 2, 3): �rst-degree

SD (FSD), second-degree SD (SSD) and third-degree SD (TSD). In an ambitious

attempt to generalize existing results, [PK13] develop systems of linear inequal-

ities for general Nth degree SD (NSD; N ≥ 1). With this general formulation,

a large class of SD relations can be analyzed using Linear Programming (LP).

The relevant LP problems are relatively small and convenient for large-scale

applications, simulations and statistical resampling methods.

Despite its merits, the [PK13] approach is not exact but an approximation

for SD optimality tests of degree N ≥ 3 and SD e�ciency tests of degree N ≥ 4.

Our study proposes a general revision of [PK13], aiming at stronger operational

conditions for higher-degree SD relations. The revision applies to a range of

SD relations; we revise even the simple case of pairwise TSD, which arises as a

special case of SD optimality with two prospects and N = 3.

Our strongest results are obtained for SD optimality of degree N = 1, 2, 3, 4

and SD e�ciency of degree N = 2, 3, 4, 5. For these SD relations, we �nd �nite

and exact systems of convex inequalities that can be implemented using LP or

Convex Quadratic Programming (CQP). By comparison, the linear systems of

[PK13] are exact only for optimality of degree N = 1, 2 and e�ciency of degree

N = 2, 3.

For optimality of degree N ≥ 5 and e�ciency of degree N ≥ 6, our con-

ditions are necessary but not su�cient. We do not consider this an important

limitation. The arguments for restricting higher-order derivatives are less com-

pelling than for lower-order derivatives. In addition, these restrictions generally

have minimal e�ects on the �exibility to model the relevant utility levels (for
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optimality tests) or marginal utility levels (for e�ciency tests).

Our analysis introduces model variables for the values of all (N −1) relevant

derivatives at all T relevant outcome levels. The additional model variables

are not only needed for higher-degree SD relations but can also be used to

impose restrictions on the values of the derivatives in addition to the standard

restrictions on the signs. This feature is relevant for tests based on Decreasing

Absolute Risk Aversion (DARA) SD ([Vick75]), Stochastic Dominance With

respect to a Function (SDWRF; [Mey77]), Almost Stochastic Dominance (ASD;

[LL02], [LR12], [THS13]) and Standard Stochastic Dominance' (StSD; [Post16]).

One way to interpret our revision is that we use piecewise polynomial func-

tions with a number of pieces that increases with the number of outcomes (T )

and the relevant degree of SD (N). This characterization generalizes results by

[HS88] and [RS89] on representative utility functions for pairwise comparison

based on lower-degree SD rules. Similarly, [CP96, Section 4] derive represen-

tative functions of in�nite-degree SD, [KP09] and [Post03] deal with the repre-

sentation of FSD and SSD e�ciency and [PFK15, Section 3] with DARA SD

optimality and e�ciency.

We focus on SD optimality and e�ciency tests for a given prospect. The

problem of constructing a portfolio which stochastically dominates a given bench-

mark portfolio ([SY94], [DR03], [Kuos04], [RDM06]) is beyond the scope of this

study. However, there exists a close link between these two topics. Notably,

[KP15], [AD15] and [Long16] construct SSD e�cient portfolios by searching si-

multaneously over portfolio weights and utility functions using LP. Our results

could be used to extend their results to TSD, fourth-degree SD (FOSD) and

�fth-order SD (FISD) using CQP.

In an empirical study, we apply a range of portfolio e�ciency tests to com-

pare a passive stock market index with actively managed stock portfolios, in

standard data sets from the empirical asset pricing literature. Our results show

that the estimated pricing errors based on higher-order SD, as well as mod-

i�cations of SSD based on SDWRF and ASSD, tend to be larger and more

signi�cant than standard mean-variance (MV) estimates, as a result of using

pricing kernels that exclude arbitrage opportunities and account for systematic

skewness. These �ndings add to the mounting evidence against market portfolio

e�ciency.

Appendix A presents formal proofs for our lemmas and propositions; Ap-

pendix B speci�es the LP and CQP problems that we use for our numerical

example in Section 7 and empirical application in Section 9.
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2 Preliminaries

We use the general framework of [PK13]. Their analysis considers M ≥ 2

prospects with risky outcomes x1, ..., xM∈ D := [A,B], −∞ < A < B < +∞.

The outcomes are treated as random variables with a discrete joint probability

distribution characterized by R mutually exclusive and exhaustive scenarios

with probabilities pr > 0, r = 1, · · · , R.
We use xi,r for the outcome of prospect i in scenario r. We collect all possible

outcomes in the joint support Y := {y : y = xi,r i = 1, ...,M ; r = 1, ..., R}, rank
these values in ascending order, y1 ≤ · · · ≤ yS , and use p∗i;s := P [xi = ys] =∑R

r=1 prI(xi,r = ys), i = 1, ...,M ; s = 1, ..., S.

Decision makers' preferences are described by von Neumann�Morgenstern

utility functions. To implement SD of degree N ≥ 1, we consider the following

set of monotonic utility functions:

UN :=
{
u ∈ CN : (−1)n+1un(x) ≥ 0, n = 0, · · · , N

}
, (1)

where u0(x) = u(x) and un(x) := ∂nu/∂xn, n = 1, · · · , N.
The economic interpretation of the restrictions on the �rst two derivatives is

well-established: u1(x) ≥ 0 amounts to non-satiation and u2(x) ≤ 0 means risk

aversion. The higher-order derivatives govern the higher-order risk preferences.

Notably, u3(x) ≥ 0 means `prudence', or skewness preference, and u4(x) ≤ 0

equals `temperance', or kurtosis aversion. For discussions of the behavioral

characterization and consequences of higher-order risk preferences, we refer to

[ES06] and [EFR16] and references therein.

The utility set UN has two redundant but convenient features. First, the

restriction u(x) ≤ 0 is redundant, because utility analysis is location invariant.

This restriction is however convenient because it implies −u1(x) ∈ UN−1, which

is a useful property in Section 6. Since the below de�nitions do not require the

values of uN (x), the requirement that the Nth derivative is continuous is also

redundant and UN is equivalent to

U∗
N :=

{
u ∈ CN−1 : (−1)n (un(y)− un(x)) ≥ 0, n = 0, · · · , N − 1; y ≥ x

}
.

The use of UN is however convenient to derive Lemma 1 without using sub-
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di�erential calculus. However, in Lemma 2 and Section 7, we use U∗
N to allow

for jumps in the Nth derivative.

De�nition 1 (Stochastic Dominance). An evaluated prospect xi, i =

1, · · · ,M , is dominated by alternative xj , j = 1, · · · ,M , in terms of NSD,

N ≥ 1, if the former is strictly preferred to the latter for all permissible utility

functions u ∈ UN :

R∑
r=1

pru (xi,r) <

R∑
r=1

pru (xj,r)

⇔
S∑

s=1

u (ys)
(
p∗i,s − p∗j,s

)
< 0. (2)

Various applications of SD consider a discrete choice set, X0 := {x1, · · · , xM},
M ≥ 2. This speci�cation is relevant in welfare economics, where SD is widely

applied following [Atkin70], because it is not possible to mix welfare distribu-

tions from di�erent countries or periods. Similarly, in health economics, medical

treatments are often indivisible and mutually exclusive.

De�nition 2 (SD admissibility). An evaluated prospect xi, i = 1, · · · ,M ,

is admissible in terms of NSD, N ≥ 1, if it is not dominated by any alternative

combination x ∈ X0, in terms of NSD.

Algorithms for implementing this concept in an e�cient manner were de-

veloped in [PWF73] and [BLR79]. The admissibility concept however became

obsolete after [BBRS85] developed LP programs to implement a more powerful

concept by [Fish74]:

De�nition 2' (SD optimality). An evaluated prospect xi, i = 1, · · · ,M ,

is optimal in terms of NSD, N ≥ 1, if it is preferred to every alternative x ∈ X0

for some permissible utility function u ∈ UN :

R∑
r=1

pru (xi,r) ≥
R∑

r=1

pru (xr) ∀x ∈ X0

⇔
S∑

s=1

u (ys)
(
p∗i,s − p∗j,s

)
≥ 0, j = 1, · · · ,M. (3)
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For M = 2, the two de�nitions are equivalent. However, for M > 2, De�ni-

tion 2 is a necessary but not su�cient condition for De�nition 2'. Put di�erently,

a prospect can be non-optimal for all permissible utility functions without being

dominated by any individual alternative.

In portfolio choice problems, the feasible set generally consists of all convex

combinations of the prospects, X1 := Conv(X0). We evaluate a given combina-

tion of prospects, x∗ ∈ X1. Without loss of generality, we rank the scenarios in

ascending order by the outcomes of the evaluated combination: x∗1 ≤ · · · ≤ x∗S .
Distinction is drawn between three closely related de�nitions of `SD e�-

ciency' which apply in this case. [Liz12b] and [KP15] provide further discussion
of SD e�ciency concepts.

De�nition 3 (SD e�ciency). An evaluated combination x∗ ∈ X1 is

e�cient in terms of NSD, N ≥ 1, if it is preferred to every alternative x ∈ X1

for some permissible utility function u ∈ UN :

R∑
r=1

pru (xi,r) ≥
R∑

r=1

pru (xr) ∀x ∈ X1.

To implement this de�nition, [PK13] use the following equivalent de�nition,

for N ≥ 2:

De�nition 3' (SD e�ciency). An evaluated combination x∗ ∈ X1 is

e�cient in terms of NSD, N ≥ 2, if it obeys the Karush�Kuhn�Tucker �rst-

order optimality conditions for some permissible utility function u ∈ UN :

R∑
r=1

pru
1 (x∗r) (x

∗
r − xj,r) ≥ 0, j = 1, · · · ,M. (4)

This formulation was �rst introduced by [Post03] for SSD e�ciency (N = 2)

and extended by [PV07, Section IV] to TSD e�ciency (N = 3). The formu-

lation applies also for higher-degree e�ciency criteria (N ≥ 4). However, it

would give a necessary but not su�cient condition for FSD e�ciency (N = 1).

[KP09] present an alternative formulation for FSD e�ciency based on piece-wise

constant utility functions which is equivalent to De�nition 1 for N = 1.

The portfolio choice literature ([SY94], [DR03], [Kuos04], [RDM06], [AD15],

[KP15], [Long16], [PK16]), generally uses a third de�nition of e�ciency:
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De�nition 3� (SD e�ciency). An evaluated combination x∗ ∈ X1 is

e�cient in terms of NSD, N ≥ 1, if it is not dominated by any alternative

combination x ∈ X1, in terms of NSD.

For FSD e�ciency (N = 1), De�nition 3 is a su�cient but not necessary

condition for De�nition 3�, as shown in [KP09]. Since both FSD e�ciency

de�nitions are already covered in detail in [Kuos04] and [KP09], our analysis

focuses on NSD e�ciency for N ≥ 2. For this case, the above three e�ciency

de�nitions are equivalent, due to the saddle point property in the joint analysis

of portfolio weights and risk preferences (see [Post03], Thm 1).

Consistent with the above equivalence relations, several existing portfolio op-

timization methods based on SSD (N = 2) search simultaneously over portfolio

weights and utility functions ([KP15], [AD15], [Long16]). The future develop-

ment of portfolio optimization methods based on NSD, N ≥ 3, may bene�t

from the characterization of SD e�ciency using piecewise polynomial functions

in Section 6 below.

3 Local analysis

This section analyses utility functions and their derivatives on a given subin-

terval [a, b] ⊆ D. The local analysis is relevant for the subintervals [ys, ys+1],

s = 1, · · · , S − 1, in De�nition 2' and [xr, xr+1], r = 1, · · · , R− 1, in De�nition

3'. The next section analyses the global behavior on the entire outcomes domain

D.
For any given u ∈ UN , N ≥ 1, consider the following decomposition of the

nth derivative, n = 0, · · · , N − 1, based on Taylor expansions:

un(x) =

N−1∑
q=n

uq(b)(x− b)q−n

(q − n)!
+Ru,n(x;b); (5)

Ru,n(x; b) := −
1

(N − n− 1)!

ˆ b

x

u(N)(t)(x− t)N−n−1dt. (6)

The nth order derivative u(n)(x) consists of a Taylor polynomial and a re-

mainder termRu,n(x; b). The analytic challenge in this section is to characterize

the relation between Ru;n(a; b) and Ru;m(a; b) for di�erent orders (n 6= m).

Let ∇u(x) :=
(
u0(x) · · ·uN−1(x)

)
. We introduce model variables α :=
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(α0 · · ·αN−1) and β := (β0 · · ·βN−1) to capture ∇u(a) and ∇u(b) for per-

missible utility functions. Consider the following linear combinations of the

model variables:

ρn (α,β) :=
(N − n− 1)!

(a− b)N−n

(
αn −

N−1∑
q=n

βq(a− b)q−n

(q − n)!

)
, n = 0, · · · , N − 1. (7)

Importantly, ρn (α,β) is constructed to capture a normalization of the nth

remainder term. Speci�cally, combining (5) and (7) yields

ρn (∇u(a),∇u(b)) =
(N − n− 1)!

(a− b)N−n
Ru,n(a; b), n = 0, · · · , N − 1. (8)

To capture the relation between the remainder terms of di�erent orders, we

will use the nth forward di�erence as de�ned through the binomial transform:

σn(α,β) :=

n∑
k=0

(−1)k
(
n

k

)
ρk (α,β) , n = 0, · · · , N − 1. (9)

The transform is self-inverse, so that the original levels can be regained from

the di�erences in the following way:

ρn (α,β) =

n∑
k=0

(−1)k
(
n

k

)
σk(α,β), n = 0, · · · , N − 1. (10)

Consider the following joint restrictions for the model variables α and β:
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(−1)n+1βn ≥ 0, n = 0, · · · , N − 1; (11)

(−1)N−n−1σn (α,β) ≥ 0, n = 0, · · · , N − 1; (12)

(−1)N−n−1
n+2m∑
q=n

(
2m

q − n

)
ϕq−nσq (α,β) ≥ 0,

m = 1, · · · ,
⌊
N − 1

2

⌋
;n = 0, · · · , (N − 2m−1) ;∀ϕ ≥ 0. (13)

For N = 1, 2, inequalities (13) do not apply, as
⌊
N−1
2

⌋
= 0. In fact, (12) can

be seen as the extension of (13) to m = 0. For N = 3, 4, we need to consider

m = 1. For N = 5, 6, we need to consider also m = 2, and so forth for higher

degrees (N ≥ 7).

The above restrictions characterize the levels and derivatives of all permis-

sible utility functions:

Lemma 1 (Local necessary conditions). For any given u∈ UN , N ≥ 1,

we �nd that ∇u(a) and ∇u(b) obey (11), (12) and (13).

Lemma 2 (Local su�cient conditions). If α = (α0 · · ·αN−1) and β =

(β0 · · ·βN−1) obey (11), (12) and (13) for N = 1, · · · , 4, then there exists u ∈
U∗
N : ∇u(a) = α and ∇u(b) = β.

The proof of Lemma 2 in the Appendix is formulated in terms of functions

u ∈ U∗
N that consist of (N − 1) polynomial pieces of degree (N − 1). An

alternative proof (based on UN rather than U∗
N ) appears as the proof of the

su�cient condition of Theorem 1 in [Fang14].

Despite the complicated structure of the coe�cients, constraints (12) and

(13) are linear in the model variables α and β. The constraints in (13), which

apply for N ≥ 3, are however of in�nite dimension due to the requirement

∀ϕ ≥0.
For general N ≥ 3, we can derive an approximate linear discretization by

restricting the parameter ϕ to the unit interval:

Lemma 3 (Bounded parameter space). The conditions (13) are equiv-

alent to
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(−1)N−n−1
n+2m∑
q=n

(
2m

q − n

)
ϕq−nσq (α,β) ≥ 0; (14)

(−1)N−n−1
n+2m∑
q=n

(
2m

q − n

)
ϕn−qσq (α,β) ≥ 0, (15)

m = 1, · · · ,
⌊
N − 1

2

⌋
;n = 0, · · · , (N − 2m− 1) ;∀ϕ ∈ [0, 1].

(Without proof)

It is straightforward to develop a suitable discretization for the unit interval.

Furthermore, for N = 3, 4 (m = 1), an exact quadratic discretization exists:

Lemma 4 (Quadratic constraints). For N = 3, 4, the inequalities (13)

are equivalent to

σn+1(α,β)
2 − σn(α,β)σn+2(α,β) ≤ 0, n = 0, · · · , N − 3. (16)

These quadratic constraints (16) are convex in the parameter space de�ned

by inequalities (11), which require an alternating sign for the forward di�erences

σn(α,β), n = 0, · · · , N−1. Hence, the �nite quadratic system {(11), (12), (16)}

is convex.

4 Global analysis

To implement SD optimality and SD e�ciency, we will now consider the case

with T outcomes zt, t = 1, · · · , T , z1 ≤ · · · ≤ zT . The outcomes partition the

interval [z1, zT ] into sub-intervals [at, bt] := [zt, zt+1], t = 1, · · · , T − 1, where

at+1 = bt = zt+1, t = 1, · · · , T − 1.

Proposition 1 (Global necessary conditions). For any utility func-

tion u ∈ UN , N ≥ 1, and outcomes z1 ≤ · · · ≤ zT , (∇u(zt),∇u(zt+1)) ,

t = 1, · · · , T − 1, obey inequalities (11), (12) and (13).
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For every sub-interval, we use parameter vectors to capture ∇u(at) and

∇u(bt). Since the sub-intervals are connected, or at+1 = bt = zt+1, t =

1, · · · , T − 1, we �nd ∇u(at) = ∇u(bt−1), t = 2, · · · , T − 1. We therefore

only need a single set of parameters αt, t = 1, · · · , T , where αt = ∇u(at)
t = 1, · · · , T − 1, and αT = ∇u(bT−1).

Proposition 2 (Global su�cient conditions). For given outcomes z1 ≤
· · · ≤ zT and degreeN = 1, 2, 3, 4, if a given set of parametersαt = (αt,0 · · ·αt,N−1),

t = 1, · · · , T , satisfy the inequalities (11), (12) and (13) for every (αt,αt+1),

t = 1, · · · , T − 1, then there exists u ∈ U∗
N : ∇u(zt) = αt, ; t = 1, · · · , T .

Using (N − 1) polynomial pieces for every subinterval, we �nd that U∗
N can

be represented by (N − 1)(T − 1) polynomial pieces of degree (N − 1).

5 SD Optimality conditions

The inequalities (11), (12) and (13) are linear in the parameters α and β.

Hence, the inequalities (2) are also linear in these parameters. We use T = S

and zt = ys. Applying Proposition 1 and Proposition 2 to the SD optimality

conditions (2), we �nd a linear system for SD optimality:

Theorem 1 (SD optimality). An evaluated prospect xi, i = 1, · · · ,M , is

optimal in terms of NSD, N ≥ 1, only if there exists a non-zero solution for the

following system of inequalities:

S∑
s=1

α0,s

(
p∗i,s − p∗j,s

)
≥ 0, j = 1, · · · ,M ; (17)

(−1)n+1αn,s ≥ 0, n = 0, · · · , N − 1; s = 1, · · · , S;

(−1)N−n−1σn (αs,αs+1) ≥ 0, n = 0, · · · , N − 1; s = 1, · · · , S − 1;

(−1)N−n−1
n+2m∑
q=n

(
2m

q − n

)
ϕq−nσq (αs,αs+1) ≥ 0,

m = 1, · · · ,
⌊
N − 1

2

⌋
;n = 0, · · · , (N − 2m− 1) ; s = 1, · · · , S − 1;∀ϕ ≥ 0.
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For N = 1, 2, 3, 4, these inequalities are also su�cient conditions.

(Without proof)

We must exclude zero solutions, or αn,s = 0 for all n = 1, · · · , N − 1 and

s = 1, · · · , S, to avoid the trivial utility function u(x) = c, ∀x ∈ D, or an

indi�erent decision maker.

For N = 1, 2, the system consists of a �nite number of linear inequalities.

For N ≥ 3, we can obtain an approximate linear discretization using Lemma 3

and a discretization of the unit interval for the parameter ϕ.

We can specify optimization problems to test the linear systems. Details

such as the orientation of the objective function and the normalization of the

variables depend on the application at hand. Appendix B discusses the CQP

problem for the optimality test that we use in the numerical example in Section

7 below.

In addition, for N = 3, 4, we may use Lemma 4 to �nd a �nite number of

quadratic inequalities for TSD and FOSD optimality. These inequalities can be

tested using CQP.

6 SD e�ciency conditions

In a similar way, we can derive linear or quadratic systems for SD e�ciency.

We could apply Proposition 1 and Proposition 2 directly to the utility function

u(x) in De�nition 3'. However, this approach would introduce redundancies, as

the e�ciency conditions (3) do not require the utility levels u(a) and u(b).

A more computationally e�cient approach applies our results to the negative

of the marginal utility function, n(x) := −u1(x). Since n(x) ∈ UN−1, this

approach allows us implement Nth degree SD e�ciency in the same way as

(N − 1)th degree SD optimality.

To remove the utility levels from the analysis, we modify the de�nition of

the forward di�erences as follows:

ςn(α,β) :=

n∑
k=1

(−1)k
(
n

k

)
ρk (α,β) , n = 1, · · · , N − 1. (18)

Furthermore, we use T = R and zt = xr.

We can now present the analogue of Theorem 1 for SD e�ciency:
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Theorem 2 (SD e�ciency). An evaluated combination x∗ ∈ X1 is e�cient

in terms of NSD, N ≥ 2, only if there exists a non-zero solution for the following

system of inequalities:

R∑
r=1

prα1,r (x
∗
r − xj,r) ≥ 0, j = 1, · · · ,M ; (19)

(−1)n+1αn,r ≥ 0, n = 1, · · · , N − 1; r = 1, · · · , R;

(−1)N−nςn (αr,αr+1) ≥ 0, n = 1, · · · , N − 1; r = 1, · · · , R− 1;

(−1)N−n
n+2m∑
q=n

(
2m

q − n+ 1

)
ϕq−nςq (αr,αr+1) ≥ 0,

m = 1, · · · ,
⌊
N − 2

2

⌋
;n = 1, · · · , (N − 2m− 1) ; r = 1, · · · , R− 1;∀ϕ ≥ 0.

For N = 2, 3, 4, 5, these inequalities are also su�cient conditions.

(Without proof)

For SSD and TSD (N = 2, 3), the system is �nite and linear. For N ≥ 4, we

may obtain a linear approximate discretization along the lines of Lemma 3 or,

for N = 4, 5, a convex quadratic exact discretization along the lines of Lemma

4.

7 Illustration (N = 3)

This section illustrates our analysis for the important case of N = 3. Figure

1 shows bounds on ∇u(x), u ∈ U3, obtained for particular values of the model

variables α and β. Let [a, b] = [0.8, 1.2] and k(x) = − exp(−4x).
Without specifying α, the only restrictions on β are the alternating signs.

In our example, we set β = ∇k(1.2). For α2 and β2 to represent the curvature

u2(a) and u2(b), u ∈ U3, we must have that α2 ≤ β2. Fixing the values for αn,

n = 2, 1, 0, introduces additional restrictions. Suppose that we select a feasible

value for α2, say α2 = k2(a) = −16 exp(−3.2). For α1 and β1 to represent the

slope u1(a) and u1(b) of some u ∈ U3, the mean-value theorem implies

α1 ≤ β1 + α2(a− b); (20)

α1 ≥ β1 + β2(a− b). (21)
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Next, we select a speci�c feasible value for α1, say α1 = k1(a) = 4 exp(−3.2).
This choice further narrows the range of relevant functions. The remaining

functions can be characterized by a lower envelope g(x) and an upper envelope

h(x), which are formally de�ned in (37) and (39) in the Appendix. These two

extreme functions and their derivatives are shown in Figure 1 as the dashed lines

(lower envelope) and the dotted lines (upper envelope). In our speci�c example,

γ ≈ −0.33 and θ ≈ 0.95.

For α0 and β0 to represent the levels u(a) and u(b), u ∈ U3, we must have

α0 ≥ g(a) = β0 + β1(a− b) +
1

2
(α1 − β1) (a− b); (22)

α0 ≤ h(a) = β0 + β1(a− b) +
1

2
β2(a− b)2 +

1

2
(α2 − β2)(a− θ)2. (23)

It is easy to verify that inequalities (20), (21) and (22) amount to the three

conditions in (12) and the inequality (23) amounts to (16) for N = 3.

The above analysis illustrates the necessary condition (Lemma 1). We can

also use the example to illustrate su�ciency (Lemma 2). Suppose that we

select a feasible value for α0, say α0 = k(a) = − exp(−3.2). We can �nd

u ∈ U∗
3 : (∇u(a),∇u(b)) = (α,β), by taking the mixture f(x) = wg(x) + (1−

w)h(x), w ∈ [0, 1], that gives f(a) = α0. By construction, the mixed function

is permissible (f ∈ U∗
3 ) and ∇f(a) = α and ∇f(b) = β). In Figure 1, the

resulting function and its derivatives are shown as the solid lines in the three

panels.

Figure 2 continues the example to illustrate that local monotonicity ensures

global monotonicity (Proposition 2). The graph combines the local results for

three subintervals: [a1, b1] = [0.4, 0.8], [a2, b2] = [0.8, 1.2] and [a3, b3] = [1.2, 1.6].

In this case, the combined function consist of (N−1)(T−1) = 6 quadratic pieces.

By contrast, the [PK13] approach would consider only utility functions with

(T − 1) = 3 quadratic pieces, which can lead to false rejections of optimality

or e�ciency. To illustrate the distinction between the two approaches, consider

the following example with two prospects (M = 2) and four possible outcomes

(T = 4):
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t yt p∗1,t p∗2,t

1 0.4 0.32 0.34

2 0.8 0.19 0.12

3 1.2 0.31 0.42

4 1.6 0.18 0.12

In this case, x1 does not dominate x2 by TSD, as may be veri�ed using a

simple pairwise TSD test. Given that non-dominance is equivalent to optimal-

ity for M = 2, we conclude that x2 is TSD optimal. We may illustrate the

distinction between the [PK13] approach and our approach by testing whether

x2 is TSD optimal using both approaches.

The [PK13] approach falsely classi�es x2 as non-optimal, because x1 achieves

a higher expected utility than x2 for all three-piece quadratic functions with

kinks at the subinterval boundary points x = 0.8, 1.2. The optimal solution to

the relevant LP problem ([PK13], Eq. 15) is given by

(u(0.4), u(0.8), u(1.2), u(1.6)) = (−1.08,−0.48,−0.12, 0.00); (24)

(u1(0.4), u1(0.8), u1(1.2), u1(1.6)) = (1.80, 1.20, 0.60, 0.00). (25)

This solution corresponds to the following one-piece quadratic utility func-

tion:

u(x) = −1.905 + 2.381x− 0.744x2. (26)

Even for this `most favorable' function, x1 achieves a higher expected utility

than x2. Unfortunately, the [PK13] approach does not consider the possibility

that the utility function kinks in the interior of the subintervals.

We may implement our approach using the CQP problem that is described

in Appendix B. The optimal value of the objective function is zero, which means

that x2 is classi�ed as TSD optimal. The optimal solution is not unique. An

example of an optimal solution is given by
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(u(0.4), u(0.8), u(1.2), u(1.6)) = (−1.01,−0.36,−0.04, 0.00); (27)

(u1(0.4), u1(0.8), u1(1.2), u1(1.6)) = (2.02, 1.21, 0.40, 0.00). (28)

This solution corresponds to the following two-piece quadratic utility func-

tion with a kink at the interior point x = 1.4:

u(x) =

−1.01 (1.4− x)
2

x ≤ 1.4

0 x > 1.4
. (29)

For this function, x2 achieves a higher expected utility than x1. Thus, our

approach correctly classi�es x2 as TSD optimal, based on a permissible function

which is ignored by the [PK13] approach.
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Figure 1 Local analysis for TSD
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Figure 2 Global analysis for TSD

8 Discussion

Our analysis allows us to further analyze the approximation by [PK13].

Their Theorem 1 implicitly assumes that Ru,n(x; b) = c 1
(N−n−1)! (x− b)

N−n−1,

n = 0, · · · , N − 2. By the Lagrange form of the remainder term, this repre-

sentation is correct for a given n if we set c = uN−1(ξn), where ξn ∈ [a, b].
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Unfortunately, the points ξn, n = 0, · · · , N − 2, are generally not identical un-

less the utility function consists of one (N − 1)th degree polynomial piece on

the relevant subinterval [a, b].

The approximation is perfect for FSD and SSD optimality tests and SSD

and TSD e�ciency tests. These tests can be formulated in terms of piece-

wise constant or piece-wise linear utility functions or marginal utility functions.

However, approximation error can arise for SD optimality tests of degree N ≥ 3

and SD e�ciency tests of degree N ≥ 4.

The approximation error disappears as (b − a) → 0. Therefore, the �aw

has no material consequences if the outcomes zt, t = 1, · · · , T , represent a �ne

partition of the outcomes domain. The application of [PK13] uses large �nancial

data sets with a dense empirical distribution. In this situation, our revision has

no material e�ect. Nevertheless, our revision can lead to improvements for

higher-degree tests if the partition of the outcomes domain is more coarse, for

example, in behavioral choice experiments.

Our revision introduces model variables for the values of all relevant deriva-

tives at all relevant outcome levels. Despite the additional variables and con-

straints, the problem dimensions of (17) and (19) remain linear in the number

of scenarios. The problems remain relatively small for typical applications, even

for a �ne discretization of the unit interval for the parameter ϕ. Also a CQP for-

mulation based on Lemma 4 is inexpensive with modern-day computer hardware

and solver software.

Our strongest results are obtained for SD optimality based on N = 1, 2, 3, 4

and SD e�ciency based on N = 2, 3, 4, 5. For SD optimality and e�ciency

of higher degrees, we produce only necessary conditions. We did not pursue

stronger results, because degree N ≥ 5 seems to have limited practical use.

Restrictions on the signs of the higher-order derivatives generally have minimal

e�ects on the �exibility to model the utility levels (in De�nition 2') and marginal

utility levels (in De�nition 3').

By contrast, restrictions on the Pratt-Arrow coe�cient of absolute risk aver-

sion (DARA SD and SDWRF), level of the lower-order derivatives (ASD) and

Kimball's coe�cient of absolute prudence (StSD) tend to be more powerful

than restrictions on the signs of the higher-order derivatives ([BP97], [PK13],

[PFK15], [PP16]). Our results for N = 1, 2, 3, 4 are relevant in this context, as

DARA SD and StSD maintain the standard TSD and FOSD restrictions and,

in addition, all these relations (DARA SD, SDWRF, ASD, StSD) require the

values of the derivatives of various orders.
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Our approach also allows us to implement the [MSTW16] SD rule, which

falls between FSD and SSD. Using 0 ≤ C ≤ 1 for an anti-index of greediness,

[MSTW16] introduce the following notion of generalized concavity:

u1(z1) ≥ Cu1(z2) ≥ 0, ∀z1, z2 : z1 ≤ z2. (30)

In the special case of C = 0, this condition amounts to non-satiation (FSD);

for C = 1, we obtain risk aversion (SSD). The case with 0 < C < 1 falls in

between of these two special cases.

We know that

σ0(αs,αs+1) =
u(xs)− u(xs+1)

xs − xs+1
= u1(z), (31)

for some z ∈ [xs, xs+1]. It is therefore possible to extend our linear system

for FSD optimality ((17); N = 1) to the following system for the new SD rule:

S∑
s=1

α0,s

(
p∗i,s − p∗j,s

)
≥ 0, j = 1, · · · ,M ; (32)

α0,s ≤ 0, s = 1, · · · , S;

α1,s ≥ Cσ0(αs,αs+1) ≥ 0, s = 1, · · · , S − 1;

σ0(αs,αs+1) ≥ Cα1,s+1 ≥ 0, s = 1, · · · , S − 1.

Our analysis of SD e�ciency can however not be extended in this way, be-

cause De�nition 3' is based on the Karush�Kuhn�Tucker conditions, which gen-

erally are not su�cient if we allow for risk seeking.

9 Empirical application

We can use our linear system (19) to analyze market portfolio e�ciency

along the lines of [PK13]. We compare the CRSP all-share index with actively

managed stock portfolios that are formed, and periodically rebalanced, based on

publicly available stock-level information. The analysis also includes a riskless

asset with return equal to the time-series average of the T-bill yield in the

relevant sample period.

We consider six di�erent sets of portfolios from the data library of Kenneth
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French: (i) ten portfolios formed on market capitalization of equity (ME); (ii) 30

portfolios formed on four-digit Standard Industrial Classi�cation (SIC) codes;

(iii) 25 portfolios formed on ME and book-to-market equity ratio (BM); (iv)

25 portfolios formed on ME and the return in the past month (R1-1); (v) 25

portfolios formed on ME and the return in the eleven months before the past

month (R2-12); (vi) 25 portfolios formed on ME and the return in the four years

before the past year (R13-60).

We analyze gross value-weighted portfolio returns for holding periods of one

month (H = 1), one quarter (H = 3) and one year (H = 12) from the �rst

available observation, depending on the data set, in the late 1920s or early

1930s, to the end of 2015.

We design optimization problems for system (19) for NSD e�ciency by de-

gree N = 2, 3, 4, 5. Appendix B speci�es the relevant LP and CQP problems.

In addition to the NSD e�ciency tests, we apply e�ciency tests based on DSD,

SDWRF, ASSD and StSD, using additional model variables and constraints

from the existing literature. We also apply a mean-variance (MV) e�ciency

test based on a linear and decreasing marginal utility function.

The time-series observations are interpreted as scenarios with equal probabil-

ities (pr = R−1). In this application, u1 (x∗r) , r = 1, · · · , R, can be interpreted

as a stochastic discount factor (SDF) that equals the marginal utility of wealth

for a representative investor. All tests are normalized such that the sample

mean of the SDF equals unity: R−1
∑R

r=1 u
1 (x∗r) = 1.

Since all base assets have a strictly positive weight in the index, the �rst-

order optimality condition (3) must hold with equality and the violations εj :=∑R
r=1 pru

1 (x∗r) (xj,r − x∗r), j = 1, · · · ,M , can be interpreted as pricing errors.

The objective of our optimization problem is to minimize (across all permissible

utility functions) the maximum (across the base assets) of the pricing errors.

We prefer this mini-max criterion because it allows for a straightforward eco-

nomic interpretation of the objective as the largest abnormal return that can

be achieved without leverage or short selling.

For statistical inference, we use a bootstrap procedure that repeatedly ap-

plies the e�ciency test to random pseudo-samples. Under the assumption of

identical and independently distributed (i.i.d.) time-series returns, the empiri-

cal return distribution is a consistent estimator of the population distribution,

and bootstrap samples can simply be obtained by randomly sampling with re-

placement from the empirical distribution.

In order to obtain consistent p-values, it is important to re-center the boot-
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strap process so that it obeys the null hypothesis ([HH96]). Our null hypoth-

esis is portfolio e�ciency and the empirical violations of this null hypothesis

are the estimated pricing errors ε̂j := R−1
∑R

r=1 α1,r (xj,r − x∗r) ,r = 1, · · · , R;
j = 1, · · · ,M . We can therefore re-center the bootstrap process by subtract-

ing the estimated pricing errors from every observation: x̂j,r := xj,r − ε̂j ,

r = 1, · · · , R; j = 1, · · · ,M .

We implement the bootstrap by generating pseudo-samples of the same size

as the original sample through random draws with replacement from the re-

centered version of the original sample, and test e�ciency in every pseudo-

sample. Finally, we compute critical values for the original test statistic from

the percentiles of the bootstrap distribution.

In a specialized study of bootstrap inference on SD e�ciency, [ST2010] rec-

ommend 300 pseudo-samples as a reasonable compromise between accuracy,

time and computer constraints for a similar application. To be on the safe side,

we used 10,000 pseudo-samples, at the cost of additional computer time.

Table I summarizes the estimation results. Perhaps surprisingly, we cannot

reject MV e�ciency of the market portfolio in most of the data sets. The

relatively large di�erences in average return imply a high estimated market risk

premium. The MV SDF therefore takes negative values for the largest market

upswings, which violates the no-arbitrage principle (a problem discussed by

[DI82]) and lowers the estimated pricing errors of high-beta investment portfolio.

The MV SDF also does not penalize the negative skewness of the market index.

The SSD e�ciency test yields even smaller pricing errors in most data sets.

The median test statistic falls by 67 basis points (bps) compared with the MV

test. However, the SSD SDF is a far cry from a well-behaved marginal utility

function. The SDF tends to show large discontinuous jumps and concave seg-

ments. This pattern is not consistent with decreasing risk aversion and casts

doubt on the economic meaning of the SSD results.

The TSD criterion (N = 3) imposes prudence (skewness preference) and

avoids non-convexity of the SDF. The median test statistic increases by 99 bps

compared with SSD. The TSD criterion also tends to be stronger than the MV

criterion because it excludes arbitrage opportunities and accounts for systematic

skewness.

The incremental e�ect of restricting the higher-order derivatives diminishes.

The FOSD criterion (N = 4) assumes temperance (kurtosis aversion) and in-

creases the median test statistic by 14 bps. The incremental e�ect of imposing

edginess (FISD; N = 5 ) is limited to just a few bps. The test results for NSD
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of even higher degree (N ≥ 6) are not distinguishable from the FISD results.

Although the higher-degree SDFs (N ≥ 3) are convex, they exhibit large

linear segments or local risk neutrality. The DSD criterion imposes DARA (or

log-convexity of the SDF). This assumption has more discriminating power than

sign restrictions for the higher-order derivatives, witness an 71 bps increase of

the median test statistic compared with TSD. StSD imposes DAP in addition

to DARA. The incremental e�ect of this assumption is just a few bps in the

median sample.

SDWRF and ASSD lead to large increases in the test statistic compared with

SSD but the results are incomparable with TSD and DSD; the ranking of these

decision rules depends on the speci�c data set. This is not entirely surprising,

because restricting the level of risk aversion or ARA di�ers fundamentally from

restricting the direction of risk aversion or ARA.

As a robustness test, we repeated our analysis after excluding the �rst size

quintile (in the �ve data sets that sort stocks on ME) and the early sub-period

before 1963, common robustness tests in the empirical asset pricing literature.

The full-sample results and conclusions are robust to these exclusions. The

median value of the test statistic decreases by tens of bps, but the e�ect of

restricting higher-order risk aversion is comparable with that in the full sample.

A robust conclusion seems that SSD is too weak for meaningful investment

analysis. By contrast, higher-order SD rules, as well as modi�cations of SSD

based on SDWRF and ASSD, seem useful as a complement to MV analysis. In

particular restrictions on the level or direction of risk aversion and the ARA

coe�cient are e�ective to increase the discriminating power of the analysis.

It adds to the mounting evidence against market portfolio e�ciency that the

estimated pricing errors based on higher-order SD rules are even larger and more

signi�cant than standard MV estimates.
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Appendix A: Formal proofs

Proof of Lemma 1. (11) follows directly from the de�nition of UN in (1).

Proving (12) and (13) involves some calculus. Using (9), (8) and (6),

σn (∇u(a),∇u(b)) =
n∑

k=0

(−1)k
(
n

k

)
ρk (∇u(a),∇u(b))

=

n∑
k=0

(−1)k
(
n

k

)(
(N − k − 1)!

(a− b)N−k
Ru,k(a; b)

)

=

n∑
k=0

(−1)k
(
n

k

)(´ b
a
−uN (t)(a− t)N−k−1dt

(a− b)N−k

)

=

´ b
a
−uN (t)(a− t)N−n−1

∑n
k=0(−1)k

(
n

k

)
(a− t)n−k(a− b)kdt

(a− b)N

=

´ b
a
−uN (t)(a− t)N−n−1(a− t− a+ b)ndt

(a− b)N

=

ˆ b

a

−uN (t)
(a− t)N−n−1(b− t)n

(a− b)N
dt. (33)

Condition (12) now follows from

sgn

(
−uN (t)

(a− t)N−n−1

(a− b)N

)
= (−1)(N−n−1). (34)

Entering (33) in the constraint (13), and rearranging terms, yields

(−1)(N−n−1)
n+2m∑
q=n

(
2m

q − n

)
ϕq−nσq (∇u(a),∇u(b)) =

(−1)(N−n−1)
n+2m∑
q=n

(
2m

q − n

)
ϕq−n

(ˆ b

a

−uN (t)
(a− t)N−n−1(b− t)n

(a− b)N
dt

)
=

(−1)(N−n−1)

ˆ b

a

−uN (t)
(a− t)N−n−1−2m(b− t)n ((a− t)n + ϕ(b− t))2m dt

(a− b)N
≥ 0.

(35)
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The RHS is non-negative, because

sgn

(
−uN (t)

(a− t)N−n−1−2m

(a− b)N

)
= (−1)(N−n−1).� (36)

Proof of Lemma 2. We will prove the lemma using piecewise polynomial

functions u ∈ U∗
N . For N = 1, 2, the results are straightforward based on the

piecewise constant and piecewise linear functions of [KP09] and [Post03].

For N = 3, consider the following two piecewise quadratic functions:

g(x) := β0 + β1(x− b) +
1

2
γ(x− b)2; (37)

γ :=

(
α1 − β1
a− b

)
; (38)

h(x) :=

β0 + β1(x− b) + 1
2β2(x− b)

2 + 1
2 (α2 − β2)(x− θ)2 x ≤ θ

β0 + β1(x− b) + 1
2β2(x− b)

2 x > θ
; (39)

θ := a+
α1 − β1 − β2(a− b)

β2 − α2
. (40)

Restrictions (12, n = 1) and (16) can be reformulated as follows

α0 ≥ β0 + β1(a− b) +
1

2
(α1 − β1) (a− b) = g(a); (41)

α0 ≤ β0 + β1(a− b) +
1

2
β2(a− b)2 +

1

2
(α2 − β2)(a− θ)2 = h(a). (42)

Since h(a) ≥ α0 ≥ g(a), we can �nd a mixture f(x) = wg(x) + (1−w)h(x),
w ∈ [0, 1], that gives f(a) = α0. The mixture function is two-piece quadratic

and permissible: g, h ∈ U∗
3 ⇒ f ∈ U∗

3 . The parameters γ and θ are set

such that gn(z) = hn(z) = un(z), for z = a, b and n = 1, 2. Hence, we �nd

(∇f(a),∇f(b)) = (α,β).

For N = 4, we can apply the same reasoning using two-piece cubic functions,

but the notation becomes more cumbersome. This case can be characterized

in a compact way by the following two-piece step functions for the third-order

derivative:
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g3(x) :=


α3 a ≤ x < θ1

γ1 θ1 ≤ x < b

β3 x = b

; (43)

γ1 := α3 −
1

2

(α2 − β2 − α3(a− b)) 2

α1 − β1 − α2(a− b) + 1
2α3(a− b)2

; (44)

θ1 := a− 2
α1 − β1 − 1

2 (α2 + β2)(a− b)
α2 − β2 − α3(a− b)

. (45)

h3(x) :=


α3 x = a

γ2 a < x ≤ θ2
β3 θ2 < x ≤ b

; (46)

γ2 :=
1

2

(α2 − β2 − β3(a− b))2

α1 − β1 − β2(a− b)− 1
2β3(a− b)2

+ β3; (47)

θ2 := a− 2
α1 − β1 − β2(a− b)− 1

2β3(a− b)
2

α2 − β2 − β3(a− b)
. (48)

The parameters γ1, γ2, θ1 and θ2 are set such that gn(z) = hn(z) = un(z),

for z = a, b and n = 1, 2, 3. Integrating these step functions thrice gives the

two relevant extremes for the utility functions. Mixing the two extremes yields

a three-piece cubic utility function f ∈ U∗
4 that takes the correct values for the

levels and derivatives.�

Proof of Lemma 4. For N = 3, 4, we have that
⌊
N−1
2

⌋
= 1, and we need to

consider only m = 1. For m = 1, the inequalities (13) are quadratic expressions

of the parameter ϕ:

0 ≤ (−1)N−n−1
(
σn (α,β)ϕ

2 + 2σn+1 (α,β)ϕ+ σn+2 (α,β)
)
=: ξn(ϕ),

n = 0, · · · , N − 3. (49)

The inequalities hold if and only if the discriminants of the quadratic func-

tions ξn(ϕ) are non-negative, n = 0, · · · , N − 3. The discriminant conditions

are given by (16). �

Proof of Proposition 1. The theorem can be proven by applying Lemma
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1 to every sub-interval (at, bt) = (zt, zt+1), t = 1, · · · , T − 1.�

Proof of Proposition 2. Applying Lemma 2 to every sub-interval (at, bt) =

(zt, zt+1), t = 1, · · · , T − 1, we can establish the existence of a set of utility

functions ft ∈ UN with (∇f t(zt),∇f t(zt+1)) = (αt,αt+1), t = 1, · · · , T − 1.

Let

u (x) :=


f1 (x) x ∈ [z1, z2]
...

...

fT−1(x) x ∈ [zT−1, zT ]

. (50)

The function is continuous at the sub-interval end points, or ∇f t(zt+1) =

∇f t+1(zt+1), t = 1, · · · , T −1. Consequently, the local monotonicity properties

of the local functions f t, t = 1, · · · , T − 1, ensure global monotonicity and,

therefore, u ∈ UN .
Furthermore, by construction,

∇ut(zt) = ∇f t(zt) = αt (51)

for t = 1, · · · , T .�

Appendix B: Optimization problems

In Section 7, we test TSD optimality of a given prospect. In this section,

we present the CQP problem that we solved for that test. For the sake of

generality, we specify the program for the general case of M ≥ 2 and 1 ≤
N ≤ 4. We combine Theorem 1 with Lemma 4 to obtain a �nite system of

convex quadratic constraints. To exclude zero solutions, we add the normalizing

constraint
∑S

s=1 p
∗
i,sα1,s = 1, following [PK13]. The objective is to minimize

the largest feasible improvement in expected utility across all prospects, again

following [PK13]. The resulting optimization problem follows:
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min θ (52)

S∑
s=1

α0,s

(
p∗i,s − p∗j,s

)
+ θ ≥ 0, j = 1, · · · ,M ;

(−1)n+1αn,s ≥ 0, n = 0, · · · , N − 1; s = 1, · · · , S;

(−1)N−n−1σn (αs,αs+1) ≥ 0, n = 0, · · · , N − 1; s = 1, · · · , S − 1;

σn+1(αs,αs+1)
2 − σn(αs,αs+1)σn+2(αs,αs+1) ≤ 0, n = 0, · · · , N − 3;

S∑
s=1

p∗i,sα1,s = 1.

Recall that σn(αs,αs+1) is a linear expression of αs and αs+1; see (7)

and (9). We end up with a CQP problem with model variables θ and αn,s,

n = 0, · · · , N − 1; s = 1, · · · , S. For N = 1, 2, the quadratic constraints vanish

and we are left with an LP problem which is equivalent to the corresponding

optimality problem in [PK13]. It follows from Theorem 1, that non-optimality

occurs if and only if θ∗ > 0.

In Section 9, we test NSD e�ciency of a market index (2 ≤ N ≤ 5). We

now discuss the associated optimization problem. We combine Theorem 2 with

Lemma 4 to obtain a �nite system of convex quadratic constraints. To exclude

zero solution, we add the normalizing constraint
∑R

r=1 prα1,r = 1. The objective

is to minimize the largest error across all prospects. The resulting optimization

problem follows:

min θ (53)

R∑
r=1

prα1,r (x
∗
r − xj,r) + θ ≥ 0, j = 1, · · · ,M ;

(−1)n+1αn,r ≥ 0, n = 1, · · · , N − 1; r = 1, · · · , R;

(−1)N−n−1ςn (αr,αr+1) ≥ 0, n = 1, · · · , N − 1; r = 1, · · · , R− 1;

ςn+1(αr,αr+1)
2 − ςn(αr,αr+1)ςn+2(αr,αr+1) ≤ 0, n = 1, · · · , N − 3;

R∑
r=1

prα1,r = 1.
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We arrive at a CQP problem with model variables θ and αn,r, n = 1, · · · , N−
1; r = 1, · · · , R. For N = 2, 3, the quadratic constraints vanish and we �nd an

LP problem that is equivalent to the corresponding e�ciency problem in [PK13].

It follows from Theorem 2, that ine�ciency occurs if and only if θ∗ > 0.

References

[AD15] Armbruster, B and E Delage, 2015, Decision Making under Uncer-
tainty when Preference Information is Incomplete, Management Sci-

ence 61, 111-128

[BP97] Atkinson, A, 1970, The measurement of inequality, Journal of Eco-
nomic Theory 2, 244�263.

[Bawa75] Basso, A and P Pianca. 1997, Decreasing Absolute Risk Aversion And
Option Pricing, Management Science 43, 206�216.

[BBRS85] Bawa, VS, 1975, Optimal Rules for Ordering Uncertain Prospects,
Journal of Financial Economics 2, 95-121.

[BBRS85] Bawa, VS, JN Bodurtha Jr., MR Rao and HL Suri, 1985, On Deter-
mination of Stochastic Dominance Optimal Sets, Journal of Finance
40, 417-431.

[BLR79] Bawa, VS, EB Lindenberg and LC Rafsky, 1979, An E�cient Algo-
rithm to Determine Stochastic Dominance Admissible Sets, Manage-

ment Science 25, 609-622.

[CP96] Caballe, J and A Pomansky, 1996, Mixed risk aversion, Journal of
Economic Theory 71, 485�513.

[DR03] Dentcheva, D and A Ruszczynski, 2003, Optimization with Stochastic
Dominance Constraints, SIAM Journal on Optimization 14, 548-566.

[DK14] Dupacová J and M Kopa, 2014, Robustness of optimal portfolios un-
der risk and stochastic dominance constraints, European Journal of

Operational Research 234, 434-441.

[DI82] Dybvig, PH and JE Ingersoll, Jr., 1982, Mean-Variance Theory in
Complete Markets, The Journal of Business 55, 233-251.

[EFR16] Eeckhoudt, L, AM Fiori, E Rosazza Gianin, 2016, Loss-averse prefer-
ences and portfolio choices: An extension, European Journal of Op-

erations Research 249, 224-230.

[ES06] Eeckhoudt L and H Schlesinger, 2006, Putting risk in its proper place,
American Economic Review 96, 280�289.

30



[Fang14] Fang, Y, 2014, Higher Order Stochastic Dominance and Aggre-
gate Investor Preferences, SSRN working paper (August 18, 2014),
http://ssrn.com/abstract=2708293.

[Fish74] Fishburn, PC, 1974, Convex stochastic dominance with continuous
distribution functions, Journal of Economic Theory 7, 143-158.

[HS88] Hadar, J and TK Seo, 1988. Asset proportions in optimal portfolios,
The Review of Economic Studies 55 (3), 459�468.

[HR69] Hadar, J and WR Russell, 1969, Rules for Ordering Uncertain
Prospects, American Economic Review 59, 2�34.

[HH96] Hall, P and JL Horowitz, 1996, Bootstrap critical values for tests
based on generalized-method-of-moments estimators, Econometrica

64, 891-916.

[HL69] Hanoch, G and H Levy, 1969, The E�ciency Analysis of Choices
Involving Risk, Review of Economic Studies 36, 335�346.

[HHM14] Hu J, T Homem-de Mello and S Mehrotra, 2014, Stochastically
weighted stochastic dominance concepts with an application in capital
budgeting, European Journal of Operational Research 232, 572-583.

[KP09] Kopa, M and Th Post, 2009, A portfolio optimality test based on the
�rst-order stochastic dominance criterion, Journal of Financial and
Quantitative Analysis 44, 1103�1124.

[KP15] Kopa, M and Th Post, 2015, A General Test for SSD Portfolio E�-
ciency, OR Spectrum 37, 703-734.

[Kuos04] Kuosmanen, T, 2004, E�cient diversi�cation according to stochastic
dominance criteria, Management Science 50, 1390-1406.

[LL02] Leshno, M, Levy, H, 2002, Preferred by �all� and preferred by �most�
decision makers: Almost stochastic dominance, Management Science

48, 1074-1085.

[Liz12a] Lizyayev A, 2012, Stochastic dominance: convexity and some e�-
ciency tests, Int. J. Theor. Appl. Financ. 15, 1�19.

[Liz12b] Lizyayev A, 2012, Stochastic Dominance E�ciency Analysis of Diver-
si�ed Portfolios: Classi�cation, Comparison and Re�nements, Annals
of Operational Research 196, 391-410.

[LR12] Lizyayev A, and A Ruszczynski, 2012, Tractable almost stochastic
dominance, European Journal of Operations Research 218, 448�455.

[Long16] Longarela, IR, 2016, A characterization of the SSD-e�cient frontier of
portfolio weights by means of a set of mixed-integer linear constraints,
Management Science, DOI: 10.1287/mnsc.2015.2282.

31



[MXF12] Meskarian R, H Xu, J Fliege, 2012, Numerical methods for stochastic
programs with second order dominance constraints with applications
to portfolio optimization, European Journal of Operational Research

216, 376-385.

[MSTW16] Meyer, J, 1977, Second degree stochastic dominance with respect
to a function, International Economic Review 18, 477-487.

[MSTW16] Müller, A, M Scarsini, I Tsetlin and RL Winkler, 2016, Between
First and Second-Order Stochastic Dominance, forthcoming in Man-

agement Science.

[Pod14] Podinovski VV, 2014, Decision making under uncertainty with un-
known utility function and rank-ordered probabilities, European Jour-

nal of Operational Research 239, 537-541.

[Post03] Post, Th, 2003, Empirical Tests for Stochastic Dominance E�ciency,
Journal of Finance 58, 1905-1932.

[Post16] Post, Th, 2016, Standard Stochastic Dominance, European Journal

of Operational Research 248, 1009-1020.

[PFK15] Post, Th, Y Fang, and M Kopa, 2015, Linear Tests for DARA Stochas-
tic Dominance, Management Science 61, 1615-1629.

[PK13] Post, Th and M Kopa, 2013, General Linear Formulations of Stochas-
tic Dominance Criteria, European Journal of Operational Research

230, 321-332.

[PP16] Post, Th and V Poti, 2016, Portfolio Analysis using Stochastic Dom-
inance, Relative Entropy and Empirical Likelihood, forthcoming in
Management Science.

[PK16] Post, Th and M Kopa, 2016, Portfolio Choice based on Third-degree
Stochastic Dominance, forthcoming in Management Science.

[PV07] Post, Th and Ph Versijp, 2007, Multivariate Tests for Stochastic Dom-
inance E�ciency of a Given Portfolio, Journal of Financial and Quan-
titative Analysis 42, 489-515.

[PWF73] Porter, RB, JR Wart and DL Ferguson, 1973, E�cient Algorithms
for Conducting Stochastic Dominance Tests on Large Numbers of
Portfolios, The Journal of Financial and Quantitative Analysis 8, 71-
81.

[QS62] Quirk, JP and R Saposnik, 1962, Admissibility and Measurable Utility
Functions, Review of Economics Studies 29, 140-146.

[RMZ13] Roman D, G Mitra, V Zverovich, 2013, Enhanced indexation based on
second order stochastic dominance, European Journal of Operational

Research 228, 273-281.

32



[RS70] Rothschild, M and JE Stiglitz, 1970, Increasing Risk: I. A De�nition,
Journal of Economic Theory, 225-243.

[RS89] Russell, WR and TK Seo, 1989, Representative sets for stochastic
dominance rules, In: Fomby, TB, Seo, TK (Eds.), Studies in the Eco-

nomics of Uncertainty: In Honor of Josef Hadar. Springer Verlag,
New York, 59�76.

[RDM06] Roman, D, K Darby-Dowman and G Mitra, 2006, Portfolio construc-
tion based on stochastic dominance and target return distributions,
Mathematical Programming 108, 541-569.

[SY94] Scaillet, O and N Topaloglou, 2010, Testing for stochastic dominance
e�ciency, Journal of Business and Economic Statistics 28, 169�180.

[ST94] Shalit, H and S Yitzhaki, 1994, Marginal Conditional Stochastic Dom-
inance, Management Science 40, 670�684.

[THS13] Tzeng, LY, RJ Huang and P-T Shih, 2013, Revisiting Almost Second-
Degree Stochastic Dominance, Management Science 59, 1250-1254.

[Vick75] Vickson, RG, 1975, Stochastic Dominance Tests for Decreasing Abso-
lute Risk Aversion. I. Discrete Random Variables, Management Sci-

ence 21, 1438�1446.

[Whit70] Whitmore, GA, 1970, Third-degree Stochastic Dominance, American

Economic Review 60, 457�59.

33


