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1. Introduction 

Decreasing absolute risk aversion stochastic dominance (DSD), introduced by Vickson 

(1975a, 1975b, 1977)), is one of the most appealing stochastic dominance (SD) criteria. 

DSD assumes non-satiation, risk aversion and decreasing absolute risk aversion (DARA) 

without imposing a specific functional form for the utility function. These assumptions 

are widely accepted as minimum regularity conditions in utility theory; for example, they 

are necessary conditions for ‘proper risk aversion’ (Pratt and Zeckhauser, 1987) and 

‘standard risk aversion’ (Kimball, 1993). In many applications, relaxing these 

assumptions would result in a substantial loss of discriminating power.  

Despite its theoretical appeal, DSD has proven to be relatively difficult to 

implement in practice. The analytic complexity of DSD stems from restricting the ratio of 

the utility function’s curvature (second-order derivative) to its slope (first-order 

derivative). Even for the simple case of pairwise comparison between two prospects, a 

closed-form solution does not exist and numerical optimization is required to verify 

whether one prospect DSD dominates another prospect. Vickson (1975a) formulated 

pairwise DSD comparison as a non-linear problem that can be solved through a dynamic 

programming routine.  

To the best of our knowledge, a DSD algorithm does not exist for the more general 

case of convex stochastic dominance, which compares a given prospect with a set of 

multiple alternatives rather than a single alternative. Fishburn (1974) shows that 

multiple pairwise comparisons generally cannot detect all non-optimal prospects. While 

Fishburn’s original analysis considered the choice from a finite number of prospects, 

Shalit and Yitzhaki (1994), among others, assume that linear combinations of the 

individual prospects are feasible, for example, mixtures of production methods, 

marketing instruments or financial securities. 

Third-order stochastic dominance (TSD; Whitmore, 1970) is often used as a more 

computationally friendly surrogate for DSD. TSD replaces DARA with the assumption of 

prudence (the third-order derivative is non-negative). For pairwise TSD comparison, a 

well-known closed-form solution exists based on comparing the third-order integrated 

distribution functions and the means of the two prospects in question. For convex TSD, 

Bawa et al. (1985) provide linear programming (LP) formulations.  
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Unfortunately, the assumption of prudence is weaker than the assumption of 

DARA, leading to a possible loss of discriminating power. For example, TSD (and every 

higher-order SD criterion) allows utility to be quadratic (increasing absolute risk 

aversion; IARA) for the entire range where utility is increasing. Hence, TSD inherits the 

known weaknesses of quadratic utility and mean-variance (M-V) analysis. In addition, 

Basso and Pianca (1997) point out that, with regard to the problem of determining lower 

and upper bounds for the price of a financial option contract, the DARA rule improves the 

stochastic dominance criteria of any order. 

This study develops linear formulations for convex DSD comparisons. To arrive at 

finite optimization problems, we focus on discrete probability distributions. Empirical 

studies generally use discrete sample distributions, and experimental studies generally 

use prospects with a discrete population distribution. In addition, many continuous 

population distributions can be approximated accurately with some discrete distribution, 

for example, by means of a finite number of random draws from the population 

distribution.  

Our approach is based on a piecewise-exponential representation of DARA utility 

functions and a (tight) local linear approximation to the exponentiation of log marginal 

utility. This approach applies generally for comparing a given prospect with a discrete set 

of alternative prospects (for instance, pairwise comparison) and for comparison with a 

polyhedral set of linear combinations of prospects. The appendix provides an extension of 

our framework to impose increasing relative risk aversion (IRRA) using piecewise-power 

utility functions. 

Our approach can be implemented by solving a relatively small system of linear 

inequalities. The LP approach to SD seems particularly convenient for reducing the 

computational burden of statistical resampling methods, which analyze not only the 

original sample but also thousands of random pseudo-samples or sub-samples drawn 

from the original sample. These methods have emerged as the dominant method for 

statistical inference in empirical applications of SD since the pioneering work by Nelson 

and Pope (1991).  

The empirical part of our study applies the DSD rule and several other decision 

criteria to analyze the efficiency of a broad stock market portfolio relative to alternative 

portfolios formed from a set of benchmark assets using historical return data. The 
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analysis is relevant because several capital market equilibrium models predict that the 

market portfolio is efficient. Another reason for expecting market portfolio efficiency is 

the popularity of passive mutual funds and exchange traded funds that passively track 

broad stock market indices. The empirical analysis shows that the pricing errors of small-

cap stocks critically depend on imposing DARA rather than prudence. The application 

also illustrates the goodness of the linear approximation to the DSD criterion. 

 

 

2. Preliminaries 

We consider M distinct prospects with risky outcomes,  ̃     ̃   . The outcomes are 

treated as random variables with a discrete, state-dependent, joint probability 

distribution characterized by   mutually exclusive and exhaustive scenarios with 

probabilities             . We use      for the realized outcome of prospect   in 

scenario  ; collect all possible outcomes across prospects and states in    {      

                      }; rank these values in ascending order        ; and use 

       , ̃    -  ∑            
,        ,        . 

 Decision makers’ preferences are described by three times continuously 

differentiable, von Neumann-Morgenstern utility functions  ( )    ,   ,     -. 

Using  ( )      ( )   ( ) for the Arrow-Pratt absolute risk aversion (ARA) quotient, the 

DSD functions can be represented as follows:  

  
   *       

 ( )      ( )          +  (1) 

    *        ( )       ( )        ( )             +  (2) 

where    represents the TSD functions. 

Continuous differentiability is assumed to simplify the notation and economic 

interpretation, and can be relaxed using super-differential calculus for general concave 

functions. Indeed, our analysis below will sometimes represent utility and marginal 

utility using piecewise-polynomial and piecewise-exponential functions. The restrictions 

on the derivatives of the TSD functions (2) have the economic meaning of non-

satiation (  ( )         ), risk aversion (   ( )         ) and prudence (    ( )  
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       ). The DSD functions (1) impose the additional restriction of DARA (  ( )  

       ). This restriction makes the prudence restriction redundant, because   ( )  

      ( )   , and, in addition, requires strict (rather than weak) monotonicity 

(  ( )         ), because marginal utility enters as the divisor in the ARA quotient. 

We distinguish between two types of SD relations: one involving the choice from a 

discrete set of prospects and another for the choice from a convex set of prospects. In both 

cases, a given feasible prospect is evaluated relative to all feasible prospects. 

 

DEFINITION 1 (OPTIMALITY) A given prospect  ̃ ,   *     +, is optimal in terms of DSD 

(TSD) relative to the set of prospects * ̃     ̃ + if there exists an admissible utility 

function     
  (    ) for which it is preferred to every alternative prospect: 

∑ (  )(         )

 

   

            (3) 

 

If the choice set consists of two prospects (   ), then the DSD optimality criterion is 

equivalent to Vickson’s (1975a) pairwise DSD criterion, and can be implemented using a 

dynamic programming algorithm that treats the ratios ( (    )   (  )) ( (  )  

 (    ))             as model variables. If more choices are available (   ), then an 

optimality test generally is more powerful than ‘simply’ performing (   ) pairwise 

dominance tests, because the evaluated prospect may be non-optimal for every admissible 

utility function even if it is not dominated by any of the alternative prospects. 

In addition to analyzing a finite number of prospects, our analysis also considers 

the case where convex combinations of the prospects are feasible, following Shalit and 

Yitzhaki (1994), Post (2003) and Kuosmanen (2004). For this case, we represent the 

choice set by: 

  {∑   ̃ 

 

   

 ∑  

 

   

                }  

 

(4) 

Post (2003, Section I) and Post and Versijp (2007, Section IV) demonstrate how the 

analysis can be generalized to a general polyhedral choice set of linear combinations of 
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prospects under linear constraints, using either a vertex representation or a halfspace 

representation.  

Our analysis allows for the inclusion of a riskless prospect along the lines of Levy 

and Kroll (1978). Including a riskless asset can sometimes simplify the analysis by 

considering only choice alternatives (mixtures of risky prospects and the riskless 

prospect) that have the same mean as the evaluated prospect. This approach could be 

particularly interesting for testing DSD efficiency because the TSD and DSD rules are 

equivalent for prospects with the same mean (Vickson (1975b, Thm 4, p. 805)). Loosely 

speaking, the relation between the preferences over the shape of the outcomes 

distribution and the location of the distribution is inconsequential for comparing 

distributions with the same mean. Unfortunately, this approach generally does not apply 

if restrictions are imposed on the riskless prospect. In addition, the dominance relation 

between prospects with equal means is generally not robust to small data perturbations, 

which complicates empirical tests.  

We use  ̃    for the evaluated prospect. The evaluated prospect may be a corner 

solution, that is, some non-negativity constraints may be binding (    ). The ordering of 

the scenarios is inconsequential in our analysis and we are free to label the scenarios by 

their ranking with respect to the evaluated prospect:   
      

 . We stress that a 

different choice of evaluated combination generally involves a different ranking. 

  

DEFINITION 2 (EFFICIENCY) A given prospect  ̃    is efficient in terms of DSD (TSD) 

relative to all feasible prospects  ̃    if it is the optimum for some admissible utility 

function     
  (    ):  

∑    (  
 )(  

      )

 

   

            (5) 

This definition follows from the Karush-Kuhn-Tucker first-order conditions for the utility 

optimization problem       ∑    (  )
 
   : a marginal adjustment to the optimal weight 

of any given prospect should result in a reduction of expected utility compared with the 

optimal solution. The usual complementary slackness condition applies: the inequalities 

in (5) are always binding for prospects that are included in the evaluated prospect (   

 ), but the inequalities may be non-binding for ‘inactive prospects’ (    ). 



 7  
 

To allow for a compact and general notation, the analysis below will use       to 

mean the number of scenarios   or the number of possible outcomes  , depending on the 

context. Similarly, we will use       and      
    , depending on the context. 

To avoid numerical instability, we use the (data-dependent) normalization   (  )  

 , where    is the median outcome of the evaluated prospect, that is,       *    ( ̃  

  )     +. The advantage of this particular normalization is that the relevant outcome 

level    is not affected by a monotone transformation of marginal utility. If desired, we 

can always rescale marginal utility after the analysis, for example, to achieve an average 

value of unity (the preferred normalization for our asset pricing application). 

 

 

3. Piecewise-exponential utility 

We can formulate DSD utility (1) in terms of log marginal utility  ( )    (  ( )), which 

is the negative anti-derivative of the ARA quotient:    ( )   ( ). DARA requires 

  ( )       ( )   , or, equivalently,   ( ) is log-convex. This insight motivates the 

following formulation in terms of second-order stochastic dominance (SSD): 

 

PROPOSITION 1 (EXPONENTIATION)  

  
  {      

 ( )     ( ( ))                 }  (6.1) 

   *        ( )       ( )             +  (6.2) 

 

(The proofs of our propositions and theorems should be evident from the preceding and 

subsequent discussions and are therefore not provided separately.) 

  

The DSD criterion thus imposes the same structure (monotonicity and concavity) for 

negative log marginal utility that the SSD criterion imposes for utility (  ). Post (2003) 

showed that the SSD criterion can be formulated in terms of piecewise-linear utility 

functions that are constructed via summation by parts. We can use the same approach to 

linearize the levels of log marginal utility ( ( )) for DSD functions: 
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PROPOSITION 2 (DSD LOG MARGINAL UTILITY) For any (normalized) utility function     
  

and a discrete set of outcomes        , we can represent the levels of log marginal 

utility by the corresponding levels of a decreasing and convex piecewise-linear function of 

the outcome levels: 

 (  )  ∑   (       )  

   

   

                      (7.1) 

 (  )  ∑   (       )  

   

   

      (7.2) 

                (7.3) 

 

The log marginal utility levels (7.1) are built from the ARA decrements     (  ̅)  

 (  ̅  ),          , and the ARA level       (  ̅  ), for some tangency points 

  ̅  ,       -          , and     (  ), using the first Mean Value Theorem for 

integration. Restriction (7.2) is a normalization of median log marginal utility that 

follows from our normalization of marginal utility:   (  )   . The non-negativity 

constraints (7.3) impose DARA. The sign of    is not explicitly restricted, but 

normalization (7.2) implies     . 

The piecewise-linear structure of log marginal utility implies that the DSD 

criterion can be represented by piecewise-exponential functions that are obtained by 

means of integration over the exponentiation of piecewise-linear log marginal utility  ( ): 

 (  )  { (∑   

   

   

)

  

   (∑   (       )  

   

   

  )                

   (  )            

 

 

(7.4) 

       
 

{  ∑  

 

   

   }  
(7.5) 

The constants                are selected to ensure continuity of the utility levels at 

the interval boundaries:      ( ̅ )  ( )   (  ̅),              

Placing the piecewise-exponential function (7.4)-(7.5) in our Definition 1 or 

Definition 2 yields necessary and sufficient conditions for DSD optimality and DSD 

efficiency of finite dimensions. Unfortunately, the resulting formulations are non-linear 
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and generally non-convex, which makes this approach unpractical. The next section 

therefore introduces a useful linear approximation. 

 

 

4. Linear DARA SD restrictions 

Our strategy is to linearize      and the exponentiation   ( )      ( ( )) (in addition 

to the linearization of  (  ) in Proposition 2). We use an exact linearization for      and 

a (tight) local linear approximation for   ( )      ( ( )). 

Post and Kopa (2013, Thm 1) represent the general N-th order SD criterion (which 

does not cover DSD) by using general piecewise-polynomial functions that are linear in 

the parameters. Applying their analysis to the special case of TSD (   ), and using our 

normalization, we find: 

 

PROPOSITION 3 (TSD UTILITY) For any (normalized) utility function       and a discrete 

set of outcomes        , we can represent the levels of utility (marginal utility) by the 

corresponding levels of an increasing and concave piecewise-quadratic (decreasing and 

convex piecewise-linear) function of the outcome levels: 

 (  )  
 

 
∑    (       )

 

   

   

    (     )                (8.1) 

  (  )  ∑   (       )    

   

   

                    (8.2) 

  (  )  ∑   (       )    

   

   

    (8.3) 

              (8.4) 

 

The utility levels (8.1) and marginal utility levels (8.2) are built from the increments to 

the second-order derivative       (  ̿  )     (  ̿),          ,          (  ̿  ), for 

some tangency points   ̿  ,       -,            and      (  ),        (  ), by a 

Taylor expansion. Restriction (8.3) is the normalization of median marginal utility. The 
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non-negativity constraints (8.4) impose the regularity conditions: non-satiation (    ), 

risk aversion (      )  and prudence (                ). 

We have now derived two sets of linear conditions: (7) expresses negative log 

marginal utility as a linear function of the levels and changes of the ARA quotient; (8) 

expresses utility and marginal utility as linear functions of the levels and changes of the 

second-order derivative. The relation between these two sets of restrictions is non-linear: 

  (  )      ( (  )). We will therefore develop a set of linear conditions based on a local 

first-order approximation to the exponentiation. It is insightful to first consider the 

general polynomial approximation. 

Let    be a prior estimate for   (  ), the specification of which will be discussed 

below, and    (  ) the associated estimate for  (  )         . The estimates are assumed 

to be positive, monotonic and normalized:          ,     . We may apply a local 

 -th order Taylor series approximation of the exponential function  ( )      ( ) at point 

 (  ) around point    (  )        : 

 ̂ ( (  ))   (   (  ))  ∑
 

  

   (   (  ))

    (  )
 

( (  )     (  ))
 

 

   

 
 

 

    (   (  ))  ∑
 

  
   (   (  ))( (  )     (  ))

 

 

   

 

   (  ∑
 

  
( (  )     (  ))

 

 

   

)  
(9) 

 

The linear approximation (   ) is of particular interest for our purposes: 

 

LEMMA 1 (EXPONENTIATION) For any utility function     
 , a discrete set of outcomes 

       , and prior marginal utility estimates          ,       the following 

linear inequalities apply: 

  (  )   ̂ ( (  ))    (   (  )    (  ))          (10) 

 

We stress that we do not approximate the utility function with an exponential function 

(or any other particular functional form) and we also do not use a Taylor series 
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approximation to the utility function. Rather, we use a local linear approximation for the 

exponentiation of log marginal utility in order to linearize the non-linear DARA 

condition. 

The goodness of the approximation depends on the specification of the prior 

estimates    for the marginal utility levels   (  ),          Our preferred approach uses 

a ‘frame function’: a parametric utility function     
  (for example, a constant relative 

risk aversion (CRRA) power function) that obeys our normalization (  (  )   ) and is 

calibrated to the decision problem in question. By setting      (  )          the prior 

estimates have the same normalization, general level of risk aversion and general 

properties (positivity, monotonicity, log-convexity) as the marginal utility functions that 

we seek to approximate. The numerical example and empirical application below further 

illustrate the use of the frame function. 

We use (6), (7), (8) and (10) to derive the following linear conditions for DSD 

optimality: 

 

THEOREM 1 (OPTIMALITY) A necessary condition for DSD optimality of a given prospect  ̃   

  *     +, is that, for any given set of prior marginal utility estimates          , 

    , there exists a solution   
 ,          ;   

 ,        , for the following system of 

linear inequalities:  

∑(
 

 
∑   (       )

 

   

   

   (     )      ) (         )

 

   

            (11.1) 

∑  (       )    

   

   

   (  ∑  (       )  

   

   

     (  ))           (11.2) 

∑   (       )    

   

   

    (11.3) 

∑   (       )  

   

   

      (11.4) 

                        (11.5) 

                (11.6) 
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A sufficient condition for DSD optimality is that some feasible solution   
 ,          ; 

  
 ,        , exhibits a log-convex pattern: 

  (∑  
 (       )    

 

   

   

)  ∑  
 (       )  

   

   

  
     

                   

 

(12) 

 

The utility function is quadratic in the outcome levels but linear in parameters. To 

illustrate the economic meaning of the parameters and prove the necessary condition, 

suppose that the evaluated prospect is preferred to every alternative prospect for     
 . 

The same preference relation will then apply for the normalized function       (  ), 

    
 . A solution to system (11) then is     ( ̅ )   ( ̅   ),          , and      

 ( ̅   ), for some tangency points  ̅  ,       -          ;     (  );       ( ̿   )  

   ( ̿ ),          ,          ( ̿   ), for some tangency points  ̿  ,       -,   

              (  ); and       (  ).  

 The system (11) gives a necessary but not sufficient condition, because some 

feasible solutions may not obey DARA due to approximation error for the exponentiation 

of log marginal utility in (11.2). If we could somehow identify a solution that does obey 

DARA, or log-convex marginal utility, then that would suffice to prove optimality. In this 

case, the solution would also obey system (11), but without approximation error, if we set 

   ∑   
 (       )    

    
   ,          The sufficient condition (12) unfortunately 

becomes non-linear if we have to search for a feasible solution. The primary purpose of 

the sufficient condition therefore is to diagnose solutions a posteriori, that is, after testing 

the necessary condition, as we will see below. 

Similarly, we can derive the following linear conditions for DSD efficiency: 

 

THEOREM 2 (EFFICIENCY) A necessary condition for DSD efficiency of a given prospect 

 ̃    is that, for any given set of prior marginal utility estimates          ,     , 

there exists a solution   
 ,        ;   

 ,          for the following system of linear 

inequalities: 
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∑(∑   (    
    

 )    

   

   

) (  
      )

 

   

              (13.1) 

∑   (    
    

 )    

   

   

   (  ∑   (    
    

 )  

   

   

     (  ))           (13.2) 

∑   (    
    

 )    

   

   

    (13.3) 

∑   (    
    

 )  

   

   

      (13.4) 

              (13.5) 

                (13.6) 

A sufficient condition for DSD efficiency is that some feasible solution   
 ,        ;   

 , 

         exhibits a log-convex pattern: 

  (∑   
 (    

    
 )    

 

   

   

)  ∑    
 (    

    
 )  

   

   

  
    

                   

 

(14) 

 

DSD efficiency (5), in contrast to DSD optimality (3), is defined in terms of marginal 

utility levels rather than utility levels, and hence (13.1) does not include squared outcome 

levels, in contrast to (11.1). Both expressions are however derived from the same 

piecewise-quadratic utility function (8.1) that is linear in parameters.  

To prove the necessary condition, suppose that the evaluated prospect is the 

optimum for     
 , and hence also for the normalized function       (  

 ). A solution 

to system (13) then is     ( ̅ )   ( ̅   ),          , and       ( ̅   ), for some 

tangency points  ̅  ,  
      

 -          ;     (  
 );       ( ̿   )     ( ̿ ), 

         , and          ( ̿   ), for some tangency points  ̿  ,  
      

 -,   

       ; and      (  
 ). 

 The system (11)/(13) simultaneously imposes the constraints for convex log 

marginal utility (7.1)-(7.3) and the constraints for decreasing and convex marginal utility 

(8). Dropping the ‘DARA constraints’ (11.2)/(13.2), (11.4)/(13.4) and (11.6)/(13.6), while 
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maintaining the other constraints, yields necessary and sufficient conditions for TSD 

optimality/efficiency. 

 

Testing and diagnosis 

We can specify linear programs to test the system of inequalities (11)/(13) for 

optimality/efficiency. The specific formulation would of course depend on the specific 

application area and decision problem. Our empirical section will develop a linear 

program for testing DSD efficiency of a stock market index relative to all portfolios 

formed from a set of base assets. An alternative approach is to include the linear 

inequalities in general method of moments estimation, along the lines of Post and Versijp 

(2007). This approach however requires convex quadratic programming (QP) and is 

computationally more demanding, especially for simulation and re-sampling methods.  

  Since the system (11)/(13) gives necessary conditions for any specification of the 

initial estimates   ,        , failure to find a feasible solution directly implies that the 

evaluated prospect is DSD non-optimal/inefficient. By contrast, if we succeed to find a 

feasible solution, then we have to test for log-convexity before we can draw a conclusion. 

For this purpose, we may solve linear system (12)/(14) or, alternatively, visually inspect a 

graph with a logarithmic scale. If a log-convex pattern is found, then it follows that the 

evaluated prospect is DSD optimal/efficient. However, if log-convexity is violated, then 

further analysis is required. 

Since violations of DARA stem from approximation error for the exponentiation of 

log marginal utility, we recommend changing the frame function if material deviations 

from log-convexity occur. For example, if a first-stage analysis based on a CRRA frame 

function identifies a feasible solution that violates DARA, a second-stage analysis could 

use a constant absolute risk aversion (CARA) frame function or, alternatively, use the 

optimal first-stage solution,   
 , to set       (∑   

 (       )    
    

   ),        .  

A natural way to gauge the strength of our DSD optimality/efficiency test is to 

compare its results with those of the associated TSD test (which excludes the DARA 

constraints but maintains the prudence constraints). Any differences between the two 

sets of results would be fully attributable to violations of DARA by the TSD test. In our 

experience with applications in practical portfolio construction and empirical asset 

pricing, we generally find substantially more power for DSD tests than for TSD tests 
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(particularly for skewed distributions with large differences in the means) and no 

material violations of DARA (using the CRRA frame function). 

 

Numerical example 

To illustrate the goodness of our local linear approximation, consider a simple investment 

example with five equally likely scenarios with a wide range of gross percentage 

investment returns   ranging from 60 (a 40% loss) to 180 (an 80% gain). We consider the 

CARA exponential marginal utility function   ( )        (    ),          , and the 

CRRA power marginal utility function   ( )     
             . We select the risk 

aversion parameters (   and   ) to rationalize the average net return level:  ,  ( )(  

   )-   ,  ( )(     )-    and select the scalars (   and   ) to yield a median value of 

unity:   (  )    (  )   , just as in our proposed procedure. We then approximate the 

CARA marginal utility levels using a local first-order approximation of the 

exponentiation around the CRRA log marginal return levels: 

  ( )̂    ( )    ( ) .  (  ( ))    (  ( ))/. 

Table I and Figure 1 illustrate that the local linear approximation is very precise 

in this case, despite the wide range of outcomes and important differences between the 

two functional forms. In the graphs of Figure 1, the open dots represent the predicted 

(normalized) CARA marginal utility levels using a linear approximation (dotted lines) 

around CRRA marginal utility (the open diamonds). The largest error over the entire 

return range is about minus 2.5 percent of the relevant marginal utility level. In addition, 

the approximation errors results in only miniscule violations of DARA, witness the log 

marginal utility levels in the bottom right panel. These results are particularly 

encouraging because the relative outcome range in many applications is smaller than in 

this example and because most DARA functions are more robust to approximation using 

a CRRA frame function than the extreme case of exponential utility. The high precision 

can be explained by the fact that the exponential function and the CRRA frame function 

have the same normalization, overall level of risk aversion and general pattern, and are 

used to evaluate the same return levels, just as in our proposed procedure. 

[Insert Table I about here] 

[Insert Figure 1 about here] 
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5. Empirical application 

We will now analyze the efficiency of a broad stock market portfolio using the DSD rule 

and other decision criteria. In this application, marginal utility can be interpreted as a 

pricing kernel and the violations of the first-order conditions as pricing errors or ‘alphas’. 

Our analysis can be viewed as an empirical test for capital market equilibrium with a 

representative investor who holds the aggregated market portfolio. The analysis can also 

be interpreted as a revealed preference test for the observed behavior of investors who 

adopt a passive strategy of broad diversification. Finally, empirical evidence about which 

market segments and active strategies outperform a passive strategy is useful for active 

money managers. 

 

Data set 

Our market portfolio is a value-weighted average of all NYSE, AMEX and NASDAQ 

stocks. It is compared with ten benchmark stock portfolios that are formed, and annually 

rebalanced, based on individual stocks’ market capitalization of equity (ME, or ‘size’), and 

the one-month US Treasury bill. We use data on monthly value-weighted portfolio 

returns from July 1926 to December 2012 obtained from the data library of Kenneth 

French. These data are based on survivor bias-free historical stock market data from the 

Center for Research in Security Prices (CRSP) at the Booth School of Business at 

the University of Chicago. The size portfolios are of particular interest because a wealth 

of empirical research, starting with Banz (1981), suggests that small-cap stocks earn a 

return premium that seems to defy rational explanation. 

We analyze gross holding period returns (HPRs) for all non-overlapping periods of 

H = 1, 3, 6 and 12 sequential months. We do not cover multi-year returns because the 

number of available non-overlapping multi-year return intervals seems too small and the 

results become sensitive to the specification of the starting year. In addition, our single-

period optimization model seems not appropriate for a long-term investor who 

periodically adjusts her asset allocation. To analyze long-term returns, the use of 

simulated multi-year returns and a dynamic programming model may be more 

appropriate. 

http://en.wikipedia.org/wiki/Survivor_bias
http://en.wikipedia.org/wiki/Historical
http://en.wikipedia.org/wiki/Stock_market
http://en.wikipedia.org/wiki/University_of_Chicago_Booth_School_of_Business
http://en.wikipedia.org/wiki/University_of_Chicago
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Table II shows descriptive statistics for the HPRs of the relevant portfolios and 

horizons. Not surprisingly, small-cap stocks tend to have a higher average return and 

standard deviation than large-cap stocks. Interestingly, the diversified market portfolio 

has a lower skewness than most of the concentrated benchmark portfolios. Apparently, 

broad diversification yields a relatively small reduction in downside risk at the cost of a 

relatively large reduction in upside potential, consistent with the observations of 

Simkowitz and Beedles (1978). 

We treat the one-month T-bill as a risky asset, because it introduces potential 

inflation risk for investors who care about purchasing power and reinvestment risk for 

those who have a multi-month horizon. However, our results and conclusions are not 

materially affected by treating the bill as a riskless asset by analyzing returns in excess 

of the T-bill rate and/or using a bill with maturity equal to the assumed investment 

horizons of            months. For example, an analysis of one-year stock returns 

(    ) in excess of the one-year yield leads to very similar pricing errors and p-values 

as an analysis of one-year nominal stock returns and rolling over 12 consecutive one-

month bills. This robustness is not surprising given the relatively low historical variation 

of the T-bill rates and the relatively small yield spread between one-year and one-month 

bills. 

 

[Insert Table II about here] 

 

Linear Program 

To test whether the market portfolio is DSD efficient, we will design a linear program for 

the system of inequalities (13). In this application, the individual prospects are the 

     risky stock portfolios and a Treasury bill with return  ̃ , and the evaluated 

prospect is our market portfolio. The           time-series return observations 

(          ) are interpreted as scenarios with equal probabilities               . 

We will use the following LP problem: 

      
       

  (15.1) 

    ∑(∑   (    
    

 )    

   

   

) (  
      )

 

   

                (15.2) 
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∑   (    
    

 )    

   

   

    (15.5) 

∑   (    
    

 )  

   

   

      (15.6) 

              (15.7) 

                (15.8) 

The objective function is the parameter  , the largest positive pricing error of the 10 size 

portfolios. Restriction (15.2) bounds the alphas from above by this parameter. A value of 

     is required to classify the market portfolio as efficient; a value of      implies 

inefficiency. We do not explicitly impose the restriction    , because, by construction, at 

least one of the 10 portfolios must have a non-negative alpha. 

Alternative specifications of the objective function include minimizing a weighted 

sum of squared alphas (which requires convex QP) or absolute alphas (which leads to LP 

but requires additional variables and constraints) and minimizing the largest absolute 

alpha. Our results are robust to the use of these alternative objective functions, 

presumably because the data set is dominated by the large positive alpha of small-cap 

stocks.  

Restriction (15.3) requires the pricing kernel to be consistent with the equity 

premium by requiring the pricing error of the T-bill to be zero ( ,  ( ̃ )( ̃   ̃ )-   ), a 

standard assumption in the asset pricing literature. Whereas we normalize median 

marginal utility to unity (15.5) and median log marginal utility to zero (15.6), the 

convention in the asset pricing literature is to set the average value of the pricing kernel 

equal to unity; we therefore rescale the optimal marginal utility levels after the 

estimation. 

 Our LP problem assumes that the portfolio possibilities consist of convex 

combinations of the ten size portfolios and the T-bill. One could generalize this 
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assumption to allow for a more general portfolio set by replacing the size portfolios with 

extreme portfolios that include short positions. However, the market portfolio assigns 

strictly positive weight to all stocks and hence short-sales restrictions are not binding and 

do not affect our results and conclusions.  

The number of variables and constraints is linear in the number of base assets and 

time-series observations, and the linear program is relatively small (given the current 

state of computer hardware and solver software) for our datasets. We were able to 

perform extensive simulation and bootstrapping exercises at relative ease using the LP 

module of SAS ran on a Levono ThinkPad T530i with a 2.4GHz, 16GB DDR3 Intel 

Pentium CPU. 

Apart from the DSD efficiency test, we also apply a TSD efficiency test that drops 

the DARA constraints and Post’s (2003) SSD efficiency test based on general piecewise-

linear utility (without requiring prudence or DARA). Finally, we apply an M-V efficiency 

test that assumes a linear marginal utility function with coefficients based on the equity 

premium (restriction (15.3)) and an average value of unity, so that the pricing errors 

amount to Jensen’s (1968) alphas.  

We selected the prior estimates             using a (normalized) power utility 

function that is calibrated to the historical equity premium, that is,     (  
 )  , 

       , with     and     such that ∑        
    and ∑   (  

      )     
   . Our 

results and conclusions are not materially affected by using other frame functions forms, 

such as an exponential function, provided the same normalization and general risk 

aversion level are used. 

 

Bootstrap method 

Portfolio efficiency tests are well-established for the multivariate normal distribution. 

Gibbons, Ross and Shanken (1989) develop test statistics for mean-variance efficiency 

with a known sampling distribution. Levy and Roll (2010) propose an interesting reverse-

engineering approach to find the smallest perturbations to the mean vector and 

covariance matrix that rationalize a given portfolio. It is generally difficult to apply 

similar approaches to SD rules, which do not specify a parametric functional form for the 

return distribution. Instead, re-sampling methods have emerged as the dominant method 
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for statistical inference on SD relations (Barrett and Donald (2003); Linton et al. (2005); 

and Linton et al. (2013)).  

In our analysis, we will use a re-centered IID bootstrap approach that repeatedly 

applies LP test (15) to pseudo-samples drawn from the original sample. Under the 

assumption of serial IIDness, the empirical return distribution is a consistent estimator 

of the population return distribution, and bootstrap pseudo-samples can simply be 

obtained by random sampling with replacement from the empirical return distribution. 

For dynamic stochastic processes, a block bootstrap may be more appropriate, but 

our samples are relatively small (particularly the sample of annual returns) and GARCH 

effects are limited for low-frequency returns to diversified stock portfolios. The IID 

bootstrap can often be used for conservative statistical inference for non-IID processes, 

and a block bootstrap is likely to further lower the p-values in our analysis and increase 

the evidence against market portfolio efficiency. For example, applying a block bootstrap 

with a block size of 12 months to our data set of monthly returns (   ) leads to a 

slightly smaller p-value for the DSD efficiency test than the IID bootstrap (0.051 vs. 

0.073). 

To ensure that the bootstrap process obeys the null hypothesis of market portfolio 

efficiency, we first re-center the empirical distribution in the spirit of Hall and Horowitz 

(1996). We correct the original time-series of returns for a given base asset           by 

subtracting the estimated pricing error  ̂     ∑   (  
 )(  

      )
 
    from every return 

observation to obtain re-centered observations:  ̂          ̂           . While this 

adjustment aligns the assets’ means with the null hypothesis, it does not affect the 

general risk levels and the dependence structure between the assets.  

We implement the bootstrap by generating 10,000 pseudo-samples of the same size 

as the original sample through random draws with replacement from the re-centered 

original sample, and test market portfolio efficiency in every pseudo-sample. Finally, we 

compute the critical values for the original test statistics from the percentiles of the 

bootstrap distribution. We performed extensive simulations to verify that our bootstrap 

procedure yields the correct statistical size and more statistical power than asymptotic 

inference methods using the return generating process of Post and Versijp (2007). 
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Empirical results 

Table III summarizes the test results (test statistic, bootstrap p-value and pricing errors) 

for the various decision criteria (M-V, SSD, TSD, DSD) and return intervals (H=1, 3, 6, 

12). Figure 2 displays the pricing kernels, using a logarithmic scale in order to emphasize 

possible violations of DARA (or log-convexity of the kernel). 

M-V efficiency cannot be rejected in a convincing way at conventional significance 

levels, consistent with the results of Gibbons, Ross and Shanken (1989), Levy and Roll 

(2010), among others. For monthly returns and annual returns, the M-V alpha of the 

small-cap portfolio ME1 is about three percent per annum and the bootstrap p-value 

hovers around ten percent. For quarterly and semi-annual returns, the alphas are 

smaller, around one percent per annum, and not statistically significant.  

One unappealing feature of the M-V kernel is that it sometimes takes negative 

values for the largest market returns, placing a penalty on outperforming the market 

during market upswings. This feature illustrates that the M-V criterion generally is not 

consistent with the conditions of non-satiation and no-arbitrage (as discussed by, for 

example, Borch (1969) and Dybvig and Ingersoll (1982)). In addition, the M-V kernel is 

linear (IARA) and hence not log-convex (DARA). The kernel does not reward positive 

skewness, and therefore seems to underestimate the appeal of small-cap stocks. The 

violations of non-satiation and DARA occur both in the original samples (which 

determine the value of the test statistic) and in the bootstrap pseudo-samples (which 

determine the bootstrap p-value). 

The SSD efficiency test yields substantially smaller pricing errors and higher p-

values than the M-V efficiency test for all horizons. Although the SSD criterion avoids 

negative values for the kernel, it imposes no structure beyond non-satiation and risk 

aversion. Not surprisingly, the SSD kernel generally does not resemble a well-behaved 

marginal utility function. Notably, the SSD kernel generally takes the shape of a step 

function with large concave segments, and it penalizes small-cap stocks for having a 

relatively high positive skewness, in violation of prudence. 

The TSD criterion imposes prudence and avoids concave segments of the kernel. 

The TSD results are remarkably similar to the M-V results. The TSD kernel tends to be 

linear (if the M-V kernel is globally non-negative) or two-piece linear with a single kink to 

avoid negative values for the largest positive market returns. In case of a two-piece linear 
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shape, the TSD kernel assigns a larger (positive) weight to scenarios with large positive 

market returns, increasing the small-cap pricing errors compared with the M-V alphas. 

The TSD kernel is convex but not log-convex and hence violates DARA. Although it 

avoids penalizing skewness, the TSD kernel generally does not reward skewness, and 

therefore seems to underestimate the appeal of small-cap stocks. Very similar results are 

obtained using the fourth-order SD criterion (not reported here). This finding is not 

surprising, given that the general N-th order SD criterion allows for quadratic utility and 

IARA. 

The DSD criterion leads to a material increase in the pricing errors relative to the 

M-V and TSD criteria for every return interval and the most convincing rejections of 

market portfolio efficiency. Most notably, for annual returns, the DSD criterion increases 

the small-cap alpha by more than 100 basis points from about three percent to four 

percent per annum, and the p-value drops from ten to five percent. The DSD test does not 

allow marginal utility to be negative or locally linear and it penalizes the market portfolio 

for offering less skewness than small-cap stocks. It seems that the appeal of small-cap 

stocks is substantially stronger and the market portfolio is substantially less efficient 

than the M-V efficiency and N-th order SD efficiency tests suggest. 

The optimal DSD kernel is very similar to exponential marginal utility (CARA), a 

boundary case of DARA.5 This result is not related to our linear approximation of the 

exponentiation of log marginal utility, which is based on a CRRA frame function and, in 

addition, is too accurate to produce non-trivial bias for the relevant return range. The 

tendency to CARA instead reflects the discriminating power of the DARA assumption in 

this application. Given the assumption of market portfolio efficiency, the returns data set 

supports IARA: the highest-yielding assets also have the highest positive skewness. 

Hence, imposing DARA increases the evidence against market portfolio efficiency. The 

DSD pricing errors are smallest for the boundary case of CARA. Assuming strictly 

                                                           
5 A notable deviation from CARA occurs for    . The DSD kernel drops steeply from 6.84 for          

(the market HPR in 1931H2) to 1.56 for          (the HPR in 1932H1), before decreasing at a moderate 

exponential rate for the remaining 169 observations. This pattern implies that the relative risk aversion 

(RRA) quotient decreases in this return range. The large drop occurs because small-caps underperform the 

market in 1931H2 but outperform in 1932H1. The kernel is clearly over-fitted to the sparse data in the left 

tail. One could obtain more robust results by using some form of kernel smoothing, for example, capping 

the ARA decrements between subsequent (ranked) observations.  An alternative approach is to impose 

IRRA using the method described in the Appendix. These approaches would increase the DSD alphas for 

small-caps for     and do not affect our overall results and conclusions. 
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decreasing ARA, for example, using a power utility function, tends to further increase the 

empirical evidence against market portfolio efficiency.  

We caution against interpreting our results as evidence in favor of exponential 

utility and also against extrapolating the functional form outside the observed return 

range. It is well known that highly risk-averse exponential functions lead to paradoxes 

such as the rejection of Markowitz’ 50/50 gamble between ‘breaking even’ and a ‘blank 

check’. A more balanced interpretation is that a function that resembles the exponential 

for the observed range (but not necessarily for the range of ‘blank checks’) gives the 

lowest pricing errors in the class of DARA functions, and other DARA functions (some of 

which are arguably more realistic) produce even larger pricing errors in our application. 

Finally, for multi-year horizons (not reported here) the optimal DSD kernel deviates from 

the boundary case and displays strictly DARA. 

[Insert Table III about here] 

[Insert Figure 2 about here] 

 

6. Concluding remarks 

Several conclusions can be drawn from our empirical application. First, the DSD criterion 

has substantially more discriminating power than the TSD criterion. Vickson (1975b) 

demonstrates that the TSD and DSD criteria are equivalent when the prospects have 

equal means. However, the average returns of financial assets show substantial variation 

due to risk premiums and/or pricing errors, and the two decision criteria may diverge in 

asset pricing and asset allocation applications. In an empirical application to stock 

portfolios, Vickson and Altmann (1977) show that the pairwise DSD test is only slightly 

more powerful than the pairwise TSD test because both tests suffer from data sparsity in 

the left tail of the return distribution. However, our convex dominance tests are more 

robust to the left-tail problem, and hence more powerful, than pairwise dominance tests. 

In our analysis, the TSD rule (and every higher-order SD rule) does not differ 

materially from the basic M-V criterion. The M-V and TSD criteria obey prudence but 

violate DARA by allowing marginal utility to be (globally or locally) linear. Both criteria 
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substantially underestimate the degree of inefficiency of the stock market index and the 

appeal of concentrated portfolios of small-cap stocks to DARA investors. The TSD 

criterion does allow for DARA utility function, but in our analysis, it assumes an IARA 

shape in order to lower the alpha for small-cap stocks, which have a relatively high mean 

and a relatively high positive skewness.  

These results are consistent with the observation of Levy and Markowitz (1979) 

that the M-V approximation does not work well for exponential utility (CARA) with a 

high level of risk aversion: in our analysis, the optimal DSD utility function approximates 

the exponential function and, in addition, the assumed level of risk aversion is high in 

order to rationalize the historical equity premium. Our findings are also consistent with 

the conclusion by Basso and Pianca (1997) that the DARA rule improves the stochastic 

dominance criteria of any order for determining option pricing bounds.  

Second, our linear approximation to the DSD criterion appears very accurate. 

Formally, our tests represent necessary but not sufficient conditions for 

optimality/efficiency. However, our optimal marginal utility functions generally show no 

or minimal violations of DARA, which implies that the approximation is perfect or very 

good. Indeed, our results and conclusions are not materially affected by using a second-

order approximation rather than a first-order approximation to the exponentiation of log 

marginal utility (results available upon request).  

We attribute the strength of our tests to the joint normalization of marginal utility 

and log marginal utility and the use of prior parametric estimates for log marginal 

utility. By standardizing marginal utility at the median outcome level, we are able to 

apply the corresponding normalization to log marginal utility, avoiding possible 

inconsistencies in the location of the two functions. By calibrating a ‘frame function’ to 

the decision problem, we obtain good prior estimates with the same normalization, 

general level of risk aversion and general properties (positive, decreasing and log-convex) 

as DSD marginal utility, allowing for a local linear approximation to the exponentiation 

of log marginal utility. 

Third, the DSD criterion can now be applied in general multivariate cases, 

including the comparison of a given prospect with a polyhedral set of linear combinations 

of alternatives. DSD can be implemented in such cases by solving a relatively small 

system of linear inequalities (13) by means of LP. The problem size is sufficiently small to 
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allow for a re-sampling approach to statistical inference without excessive CPU time. 

Another class of multivariate applications compares a given prospect with a discrete set 

of alternative prospects (without allowing for mixtures) and can also be implemented by 

solving a system of linear inequalities (11). A generalization of our tests based on a 

second-order approximation to the exponentiation can be implemented using convex QP. 

Our analysis can be extended to decision rules based on increasing relative risk 

aversion (IRRA) using piecewise-power utility functions. The appendix provides further 

details. Although IRRA is a common assumption in utility theory, it appears less 

powerful than DARA in our experience, because it allows for quadratic utility (IARA   

IRRA) and violations of prudence. As a case in point, in our empirical analysis, the 

(approximately) linear M-V/TSD kernel and (approximately) exponential DSD kernel 

show no material violations of IRRA and imposing IRRA therefore has a limited effect. 

Finally, we hope that this study will contribute to the further proliferation of the 

SD methodology by improving its discriminating power and reducing its computational 

burden in practically relevant applications.  

 

 

Appendix 

This section discusses extensions of our framework to impose increasing relative risk 

aversion (IRRA). Let  ( )   ( )      ( )    ( ) represent the Arrow-Pratt relative 

risk aversion (RRA) quotient. We assume strictly positive outcomes (    ), which may 

require an additive data transformation (for example, using total wealth or gross 

returns). Consider the following set of IRRA functions:  

  
   *       

 ( )      ( )          +  (A.1) 

These functions are a subset of the SSD functions    rather than the TSD functions   , 

because IRRA (in contrast to DARA) does not imply prudence. Using   
  in Definition 1 

and 2 yields definitions of ‘IRRA SD’ (ISD) optimality and efficiency. We can formulate 

IRRA in terms of the composite function  (  ( ))     (  ( )), which is constructed to 

yield ( (  ( )))    (  ( ))
 

 
  ( ) and   (  ( ))    ( )  IRRA amounts to 
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    (   ( ))     (A.2) 

 

PROPOSITION 4 (EXPONENTIATION)  

  
  {      

 ( )     (  (   ( )))        
         }  (A.3) 

  
  *        ( )       ( )              ( )   +  (A.4) 

 

The ISD criterion thus requires that log marginal utility  ( )     (  ( )) is a decreasing 

concave function of the log outcomes.  

 

PROPOSITION 5 (ISD LOG MARGINAL UTILITY) For any (normalized) utility function     
  

and a discrete set of outcomes        , we can represent the levels of log marginal 

utility by the corresponding levels of a decreasing and concave piecewise-linear function of 

the log outcome levels: 

 (  )     ∑      (     )

   

   

                    (A.5) 

 (  )     ∑      (     )

   

   

    (A.6) 

                (A.7) 

 

In this proposition,     (  ),     (  ), and     (  )   (    ),         1, for some 

tangency points    ,       -          .  

The log-log structure implies that the ISD criterion can be represented by 

piecewise-power functions: 

 (  )  

{
 

 
 (  ∑   
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   (   ∑     (  )

   

   

)  

(  ∑   
   
   )

             

   (  )              

 (A.8) 



 27  
 

       
 

{  ∑   

 

   

  }  (A.9) 

The constants              are selected to ensure continuity of the utility levels at the 

interval boundaries. If ∑   
   
      for some     then (A.8) must be modified to: 

 (  )      (   ∑     (  )

   

   

)   (  )      (A.8’) 

Like the piecewise-exponential DSD functions, these piecewise-power ISD functions are 

non-linear and non-convex in the parameters and hence unpractical in our applications. 

However, we can linearize      and   ( )      ( ( )) by analogy to our approach to 

DSD.  

 

PROPOSITION 6 (SSD UTILITY) For any (normalized) utility function       and a discrete 

set of outcomes        , we can represent the levels of utility (marginal utility) by the 

corresponding levels of an increasing and concave piecewise-linear (decreasing piecewise-

constant) function of the outcome levels:  

 (  )  ∑   (       )

   

   

              (A.10) 

  (  )  ∑   

   

   

                    (A.11) 

  (  )  ∑   

   

   

    (A.12) 

                (A.13) 

 

The needed adjustments to Theorem 1 and 2 now follow from Proposition 4, Proposition 5, 

Proposition 6 and Lemma 1. 

 To impose the attractive combination of DARA and IRRA, we could simply 

impose the two sets of restrictions simultaneously. This approach however involves 

several redundant variables and constraints. A more computationally efficient approach 

is to complement the DSD restrictions with (A.7) and 
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Table I Numerical Example 

We consider a simple investment example with five scenarios (       ) with equal probability 

(      ) and a gross percentage investment returns   ranging 60 (a 40% loss) to 180 (an 80% 

gain). We consider two different marginal utility functions:   ( )            (       ) (CARA) 

and   ( )                (CRRA). We approximate the CARA marginal utility levels using a local 

first-order approximation of the exponential transformation around the CRRA log marginal 

return levels:    ( )̂    ( )    ( ) .  (  ( ))    (  ( ))/. The last two columns show the error 

  ( )̂    ( ) and percentage error   ( )̂   ( )   . 

Scenario 

(t) 

Prob. 

(  ) 

Gross 

Return 

(  ) 

CRRA 

  ( ) 

CARA 

  ( ) 

 

Pred. 

  ( )̂ 

Error %Error 

1 0.2 60 2.321 2.017 1.995 -0.022 -1.1% 

2 0.2 90 1.418 1.420 1.420 0.000 0.0% 

3 0.2 120 1.000 1.000 1.000 0.000 0.0% 

4 0.2 150 0.763 0.704 0.702 -0.002 -0.3% 

5 0.2 180 0.611 0.496 0.483 -0.012 -2.5% 
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Table II Descriptive Statistics 

The table shows descriptive statistics for gross holding-period returns to ten benchmark stock 

portfolios, the stock market portfolio and the one-month US Treasury bill. The benchmark 

portfolios are based on individual stocks’ market capitalization of equity, and each represent a 

value-weighted average of a segment of the cross-section of stocks (using NYSE size break 

points). The stock market portfolio is a value-weighted average of all NYSE, AMEX and NASDAQ 

stocks. The sample period ranges from July 1926 to December 2012 (1,038 months). Separate 

statistics are shown for a return interval of H = 1, 3, 6 and 12 months. The raw month-end-to-

month-end returns are taken from Kenneth French’ data library. Multi-month HPRs are obtained 

as the product of the relevant gross monthly returns.   

 H=1  H=3 

Portf Mean Stdev Skew Kurt  Mean Stdev Skew Kurt 

ME1 (S) 101.43 10.16 3.69 37.19  104.30 21.48 3.05 22.62 

ME2 101.26 8.89 2.22 22.00  103.78 18.51 2.61 21.69 

ME3 101.26 8.13 1.89 20.19  103.78 17.09 2.71 24.64 

ME4 101.21 7.52 1.51 15.69  103.62 15.52 2.20 18.78 

ME5 101.17 7.22 1.10 12.91  103.52 15.02 2.27 20.91 

ME6 101.16 6.89 0.98 11.98  103.49 14.02 1.98 17.51 

ME7 101.11 6.53 0.76 10.87  103.34 13.20 1.52 13.67 

ME8 101.06 6.19 0.70 10.66  103.17 12.26 1.44 13.24 

ME9 101.00 5.89 0.52 10.33  103.00 11.74 1.25 12.92 

ME10 (L) 100.87 5.10 0.05 6.40  102.60 9.92 0.45 8.17 

T-bill 100.29 0.25 1.04 1.26  100.87 0.75 0.97 0.91 

Mkt 100.92 5.41 0.13 7.34  102.75 10.70 0.74 9.30 

 H=6  H=12 

Portf Mean Stdev Skew Kurt  Mean Stdev Skew Kurt 

ME1 (S) 108.60 28.53 1.42 7.89  119.37 40.60 0.83 1.19 

ME2 107.56 24.93 1.41 10.57  116.65 35.04 0.67 1.90 

ME3 107.57 22.67 1.33 10.87  116.41 31.92 0.76 3.07 

ME4 107.23 20.76 1.11 8.34  115.66 29.53 0.45 1.04 

ME5 107.04 19.90 0.88 8.11  115.06 27.39 0.20 1.13 

ME6 106.98 18.78 0.66 6.67  114.92 26.32 0.15 0.64 

ME7 106.69 17.70 0.37 5.07  114.43 25.31 0.09 1.02 

ME8 106.34 16.43 0.39 5.01  113.40 23.17 0.06 1.38 

ME9 106.00 15.59 -0.17 4.52  112.74 21.90 -0.32 0.87 

ME10 (L) 105.19 13.50 -0.51 2.84  110.92 19.23 -0.44 -0.07 

T-bill 101.74 1.50 0.93 0.74  103.49 2.99 0.92 0.72 

Mkt 105.50 14.45 -0.32 3.06  111.63 20.39 -0.42 0.02 
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Table III Portfolio Efficiency Tests 

The table shows results for testing efficiency of the value-weighted market portfolio relative to 

the ten size portfolios and the one-month Treasury bill. Separate results are shown for the M-V, 

SSD, TSD, and DSD criteria and gross holding-period returns of H = 1, 3, 6 and 12 months. 

Statistical inference is based on a re-centered bootstrap that generates 10,000 pseudo-samples 

from the re-centered original sample of H-month returns. The original returns are re-centered by 

subtracting the assets’ estimated pricing errors, so that the market portfolio becomes efficient. 

The pricing kernels are rescaled to an average value of 1 (after the estimation). For the sake of 

interpretation and comparability, the test statistics and pricing errors for an interval of H months 

are ‘annualized’ by multiplication with (12/H). Asterisks *, ** and *** indicate that the bootstrap p-

value for a test statistic or pricing error is smaller than 10%, 5% and 1%, respectively. 

  H=1  H=3 

  M-V SSD TSD DSD  M-V SSD TSD DSD 

Goodness 

of fit 

Test stat 2.889* 0.726 2.910* 3.247*  1.087 0.640 1.215 1.897 

P-value 0.082 0.447 0.080 0.073   0.394 0.343 0.375 0.232 

Pricing 

errors 

ME1 (S) 2.889* 0.692 2.910* 3.247*  1.020 -0.183 1.215 1.897 

ME2 1.159 -0.385 1.166 1.340   0.052 -0.616 0.184 0.627 

ME3 1.588 0.309 1.599 1.762   0.577 0.112 0.716 1.105 

ME4 1.539 0.726 1.553 1.694   0.871 0.234 0.978 1.311 

ME5 1.261 0.381 1.273 1.368   0.626 0.301 0.729 1.001 

ME6 1.390 0.671 1.404 1.509   1.087 0.640 1.178 1.429 

ME7 1.189 0.726 1.200 1.282   0.928 0.640 0.989 1.162 

ME8 0.844 0.652 0.851 0.924   0.809 0.640 0.857 0.999 

ME9 0.482 0.246 0.488 0.531   0.397 0.438 0.430 0.512 

 ME10 (L) -0.092 0.053 -0.093 -0.099   0.010 0.099 0.002 -0.036 

  H=6  H=12 

  M-V SSD TSD DSD  M-V SSD TSD DSD 

Goodness 

of fit 

Test stat 1.324 0.566 1.397 1.962  3.050* 0.944 3.295* 4.055** 

P-value 0.336 0.396 0.324 0.198  0.098 0.230 0.099 0.050 

Pricing 

errors 

ME1 (S) 1.324 -0.004 1.397 1.962  3.050* 0.944 3.295* 4.055** 

ME2 0.346 -0.410 0.374 0.635  1.180 -0.091 1.275 1.777 

ME3 0.942 0.387 1.001 1.580  1.662 0.626 1.795 2.330 

ME4 1.122 0.246 1.185 1.779  1.541 0.422 1.665 2.102 

ME5 0.910 0.445 0.960 1.390  1.470 0.944 1.588 1.857 

ME6 1.207 0.566 1.266 1.734  1.561 0.615 1.686 2.031 

ME7 1.036 0.566 1.102 1.841  1.316 0.676 1.422 1.656 

ME8 0.904 0.537 0.952 1.433  1.093 0.767 1.181 1.359 

ME9 0.558 0.404 0.559 0.240  0.732 0.503 0.791 0.840 

 ME10 (L) -0.034 0.086 -0.041 -0.146  -0.115 -0.022 -0.124 -0.160 
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Figure 1 Numerical Example 

We consider a simple investment example with five scenarios (       ) with equal probability 

(      ) and a gross percentage investment returns   shown in Table I. The graphs illustrate the 

approximation of the CARA marginal utility levels   ( )            (       ) using a local first-

order approximation of the exponential transformation around the log of the CRRA marginal 

return levels   ( )               :   ( )̂    ( )    ( ) .  (  ( ))    (  ( ))/. The top left panel 

shows the logs of the two marginal utility functions, using open dots for the CARA function and 

open diamonds for the CRRA function. The top right panel shows the local first-order 

approximation of the exponential transformation, using dotted lines for the tangency lines at 

  (  ( )). The bottom left panel displays the two marginal utility functions together with the 

resulting approximation to the CARA marginal utility function (dotted line). The bottom right 

panel shows the natural logs of the two functions and the approximation. 
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H=1 H=3 

 

 

 

H=6 H=12 

 

 

 

 

Figure 2 Log Pricing Kernels 

The graphs show the natural logarithms of the pricing kernels generated by our tests for M-V, 

SSD, TSD and DSD efficiency of the value-weighted market portfolio relative to the ten size 

portfolios and the one-month Treasury bill. Separate results are shown for gross holding-period 

returns of H = 1, 3, 6 and 12 months. For the sake of comparison, the pricing kernels are rescaled 

to an average value of 1. In order to avoid overstretching the graph, the ordinate is truncated at a 

value of -3 (or a value of the pricing kernel of     (  )      ). The M-V kernel is represented by a 

dotted line in order to distinguish it from the TSD kernel, which is very similar. A utility function 

exhibits DARA if and only if log marginal utility is convex. 
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